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During this period investigations were carried out in two areas:

o Energy- and structure-related properties of small gold clusters

deposited on the GaAs(ll0) surface were investigated in this

work using a molecular dynamics procedure. A recently devel-

oped potential energy function based on two- and three-body

interactions was employed in calculating energies and forces.

These calculations produced some consistent results with ex-

periments. Calculations indicate that Au atoms adsorbed on

the GaAs(ll0) surface do not favor the formation of 3D clus-

ters at the very early stages of deposition (i.e, up to Aus). In all

cases, gold atoms were found to prefer sites near Ga atoms. Sites

for Au near As atoms are energetically less favorable. F_rther-

more, the present study suggests that three-body interactions

involving triplets of Au and As atoms play an important role in

determining sites and binding energies for deposited Au atoms

on the GaAs(ll0) surface. Results and the method of calcula-

tion are given in Appendix 1.

. A comparative study was conducted in this part for six clas-

sical many-body potentials developed recently for silicon sys-

tems. Extensive static calculations were performed using these

potentials on small Si clusters, bulk point defects, elastic con-

stants, polytypes, pressure induced phase transformations and

low index plane surfaces. Similarities and differences between

six potentials were identified and their transferability as well as

their accuracy with respect to experiment and first-principles

methods were assessed. In general, all these potentials do a

relatively poor job of modeling the energetic of small clusters

as well as the various reconstructions of the Si(lll) surface.

They, however, provide a fair to good description of the prop-

erties of bulk diamond cubic silicon, its intrinsic defects, and of

the Si(100) surface. Besides the fact that none of them model

_r-bonding, their inability to be more transferable lies in their

inadequate description of the angular forces. Each potential has

its strengths and limitations but none appears to be clearly su-



perior to the others and none is totally transferrable, However,
despite their shortcomings we feel that some of these potentials

will be useful in large scale simulations of materials-related prob-

lems. They can give valuable insights into phenomana which are

otherwise intractable to investigate either experimentally or via

first-principles methods. Details of this investigation are pre-

sented in Appendix 2.



APPENDIX 1.

SIMULATION CALCULATIONS FOR GOLD CLUSTERS

ON THE GaAs(ll0) SURFACE
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Introduction

Due to its increasing technological importance in recent years,

numerous experimental as well as theoretical investigations have been

carried out in the area of metal-semicontactor interfaces. Today,

structural aspects of such interfaces related to atomic configurations

in particular, are highly desired. Simulation calculations are carried

out here to analyze some of the energy- and structure-related proper-

ties of the Au/GaAs interface at an atomic level. In this study, small

clusters of gold with varying number of atoms were deposited on the

GaAs(ll0) surface. Calculations were carried out to determine bind-

ing energies of the clusters as well as the energetically most favorable

binding sites for deposited gold atoms.

Method of Calculation

A molecular dynamics procedure based on the Nordsieck-Gear al-

gorithm was employed here. Calculations were performed considering

a potential function based on two- and three-body interactions. The

total energy of interaction of a system of N particles was calculated

aS"
N N

i,j i,j,k
i<j i<j<k

where, u(r-_,_.) and u(_,_'j,r_), denote the two- and three-body in-

teractions, respectively. The two-body part was represented by the

Lennard-3ones pair potential:

u(rij)--el(r° ) 12- 2(r°) 6] (2)
[ rij rij

where, rij -- ]_'i - Fjl; ro represents the equilibrium distance and e

denotes the two-body energy at rij - ro. For the three-body part the

Axilrod-Teller triple dipole potential was taken into consideration:

u(¢i ej ¢k) = Z(1 + 3CostgiCosOjCosOk), , (3)
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where, Oi, Oj, Ok and rij, rik, rj_ represent the angles and the sides of

the triangle formed by the three particles i, j and k, respectively. The

three-body intensity parameter is denoted by Z.

It has been demonstrated that this potential function is able to

reproduce several energy- and structure-related properties for GaAs

systems [1-4]. In a recent study this same potential function has been

parametrized for the Au-Ga-As system and, at the same time, it has

been used for determining high energy adsorption sites for a single

gold atom deposited on the (110) surface of GaAs [5]. Parameters of

the potential function for the Au-Ga-As system are given in Table 1.

In the present investigation a similar procedure was employed and cal-

culations were carried out for small clusters of gold atoms (containing

up to five Au atoms) deposited on the (110) surface of GaAs. Simu-

lations were performed for the low temperature case (T_I K), and a

time step of 1.4 × 10 -15 sec. was considered throughout this study.

Also, periodic boundary conditions were employed in two directions

to provide continuity for the exposed surface. The (110) surface was

generated, first, as an abrupt termination of a properly oriented GaAs

lattice. Next, Au atoms were deposited on this ideal surface and the

system was equilibrated under the molecular dynamics code. In gen-

eral, for varying numbers and positions of gold adatoms deposited on

GaAs(ll0), an average of 8,000 molecular dynamics steps was found

to be sufficient for a complete equilibration of the system. In the

present work, however, to assure that the system is fully equilibrated,

10,000 time steps were employed. For the very last 2,000 time steps

the temperature rescaling was turned off and calculated values, in

each case, were collected for averaging. During this period the tem-

perature remained fairly constant indicating that the system was fully

relaxed.

Calculations for the (110) surface were carried out employing a

GaAs substrate of 60 unit cells in a (4 × 3 × 5) arrangement containing a

total of 240 atoms. The exposed surface consisted of 12 (4×3) surface

cells. A portion of this surface is depicted in Figure 1. In addition to

Ga and As atom positions in the top two layers of the substrate, vari-

ous energetically favorable sites for Au adatoms are also shown. In the
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calculations, deposited Au atoms as well as substrate atoms located

in the top two layers were permitted to fully relax. The rest of the
substrate atoms in the system were held fixed in their lattice sites,

but they were permitted to fully interact with the relaxing atoms.
Because the calculations in this study were carried out at a low tem-
perature, Au atoms positioned at the surface often remain trapped at
the nearest minimum. To eliminate this undesired situation, there-

fore, calculations for each cluster, were repeated considering several

different initial configurations and only those with lowest energies are

reported here.

Results and Discussions

Figure 1 shows favorable binding sites for Au atoms of different

clusters deposited on the (110) surface of GaAs. For a single Au atom,

one of the favorable binding sites is shown by the letter 'a' in Figure 1.

The location of this site along with the binding energy value given in

Table 2 for a single Au atom, are consistent with our earlier report [5].

In the case of Au2, the most favorable sites for Au atoms are 'a' and

'b' positions which are identical high energy sites in two neighboring

surface cells. In this case the separation between two Au atoms is

quite large (N 4 /_). Therefore, for a dimer deposited on the (110)

surface the Au-Au interaction is expected to be rather weak and this

is reflected in the eb value given in Table 2. For Au3, sites 'a', 'b'

and 'c' were predicted to be most favorable. The deposited cluster,

in this case, is an isoceles triangle and the distance between two Au

atoms (forming the equal sides of the triangle) is about 2.5 _. This

is slightly shorter than the Au-Au equilibrium distance (see Table 1).

Even though pair-wise interactions between gold atoms are expected

to be more attractive, the Au atom at site 'c' is situated in close

proximity to three As atoms (two are in the top layer and the other

is in the second layer) which form Au-Au-As and Au-As-As trimers

with acute angles providing strong repulsive three-body forces. This is

reflected in the eb value for Au3 which is about 0.21 eV/per Au atom

weaker in binding energy than the individual gold atom (see Table 2).

For Au4, sites 'a', 'c', 'd' and 'e' were found to be the most favorable
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adsorption sites. Ill this case, while three Au atoms are located near

each other, the forth one, which is in site 'e', is somewhat separated. It

is equidistant from atoms at 'c' and 'd' with a separation of about 4.7

I. At that separation no significant Au-Au interactions are expected

coming from the Au atom positioned at the site 'e'. Repulsive three-

body interactions, however, ill this configuration, arising from Au-

Au-As and Au-As-As triplets, were reduced. Accordingly, the value

of eb for Au4 was found to be decreased indicating that the bonding

is somewhat stronger in this case. For Aus, favorable adsorption

sites were found to be 'a', 'c', 'd', 'f' and 'g' as indicated in Figure

1. Ill this case the two Au atoms located at sites 'f' and 'g' are

somewhat separated from atoms at 'a', 'c' and 'd'. Like Au4, in this

case also farther atoms (located at sites 'f' and 'g') are not expected to

contribute much Au-Au interaction. Similarly, calculations indicate

that repulsive three-body interactions (due to triplets involving Au

and As atoms) also remained at a low level. Therefore, the value of

the binding energy per atom, eb, for the Au5 case as shown in Table

2, did not change much when compared with Au4.

Based on the potential energy parameters given in Table 1, it

is expected that an isolated Au-Ga dimer would be less energetic

than an isolated Au-As dimer. On the GaAs (110) surface, how-

ever, Au adatoms in general, were found to prefer sites closer to Ga

atoms. Present calculations clearly indicate that this is because of

strong three-body interactions exhibited by trimers involving Au and

As atoms. Judged by the values of the three-body parameters given

in Table 1, on the other hand, energies coming from trimers involving

Au and Ga atoms are expected to be rather small. The three-body

part of the potential function, as given in Eq. 3, provides strong repul-

sive energies, in particular, for Au-Au-As and Au-As-As trimers with

acute angles. Accordingly, surface sites for Au near As atoms become

energetically less favorable. This outcome is in general qualitative

agreement with various reports [6,7] indicating that Au is prefentially

bonded to Ga atoms at the surface. Feenstra [6] using an STM tech-

nique measured the lateral distance between a Au adatom and a top

layer substrate Ga atom as .-_1.4 ]k. While this value is consistent

with the calculated lateral distance of 1.44/_ between the single Au
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adatom and its closest Ga neighbor, present calculations predict that

this nearest neighbor Ga atom is located in the second layer.

Conclusions

Calculations indicate that Au atoms adsorbed on the GaAs(ll0)

surface do not favor the formation of 3D clusters at the very early

stages of deposition (i.e, up to Aus). In all cases, gold atoms were

found to prefer sites near Ga atoms. Furthermore, the present study

suggests that three-body interactions involving triplets of Au and As

atoms play an important role in determining sites and binding en-

ergies for deposited Au atoms on the GaAs(110) surface. Results

obtained in this investigation are strictly based on energetics and no

entropic aspects were taken into consideration here. Therefore, it is

recommended that extreme care should be exercised when comparing

these results with experimental findings.
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Table 1. Parameters for the Potential Energy Function [2].

Two-Body Part

Au - Au 0.9760 2.6685

Ga - Ga 1.0039 2.4607
As - As 1.1641 2.4913

Au - Ga 0.8860 2.5540

Au - As 1.7500 2.5350

Ga - As 1.7379 2.4481

Three-Body Part

z (eV£9)

Au - Au - Au

Ga - Ga - Ga
As - As - As

Au - Au - Ga

Au - Au - As

Au - Ga - Ga
Au - As - As

Au - Ga - As

Ga - Ga - As

Ga - As - As

2009.0

1826.4
2151.9

278.75

6000.0

1237.7
5600.0

3270.0

1900.0

4600.0
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Table 2. Calculated binding energies for varying numbers of gold

atoms deposited on the (110) surface of GaAs. The total binding
energy is denoted by Eto, and eb represents the average binding energy

per Au adatom. (Energies are given in eV). Letters a through g
indicate for each cluster favorable positions of deposited Au atoms on

the (110) surface as shown in Figure 1.

Number of Sites

Gold Atoms (See Figure 1) -E,o, --eb

1 a 2.69 2.69

2 a,b 5.44 2.72

3 a,b,c 7.44 2.48

4 a,c,d,e 10.40 2.60

5 a,c,d,f,g 12.90 2.58
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Figure 1. A schematic top view of the (110) surface. Large and

small open circles represent relative positions of Ga atoms located in

the first and second layers. Large and small solid circles represent

relative positions of As atoms in the first and second layers. Large

open circles with letters are favorable sites for Au atoms of deposited

clusters. A unit surface cell is indicated by dotted lines.
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APPENDIX 2.

A COMPARATIVE STUDY OF SILICON EMPIRICAL

INTERATOMIC POTENTIALS



1 INTRODUCTION

In recent years, there has been a surge of computer simulations for complex

materials science-related phenomena, e.g., molecular dynamics simulations of

melting, epitaxy, and crystal growth. In these types of calculations or

simulations, it is, of course, desirable to use accurate first-principles quantum-

mechanical methods. 1 However, because they require a large computational

effort to accurately solve the Schrrdinger equation, these methods are currently

limited to studies of static properties for systems involving only a few tens of

atoms. Nevertheless, progress, although slow, is being made to circumvent

these limitations. 2 On the other hand, although they generally lack the accuracy

of the former methods, empirical interatomic potentials can handle much larger

systems and can be used to study static as well as dynamic properties of such

systems.

The theory of interatomic potentials for ionic systems and metals is rather

well established as indicated by the remarkable success of some methods, e.g.,

the shell model 3 and the embedded atom method, 4 to accurately predict a wide

range of properties. Unfortunately, the theory for covalent solids is less

developed despite the many attempts of the last several years to model such

strongly bonded materials.

Not surprisingly, because of its technological importance, silicon has been the

prototype material for developing empirical potentials. About sixteen such

potentials have appeared in the literature in the last seven years. 5-22 Of course,

every new potential is claimed by its originators to be superior, i.e., more

accurate and/or more transferrable than its predecessors. While these claims

are often valid to some extent, such improvements are almost always achieved

by sacrificing other properties. 10-13 Also, very often it is not truly clear what

causes the better description. Is it due simply to a more flexible functional form

and/or a better fitting strategy 10 or does the new potential really give a better

description of covalent bonding? 12 Even the question of the range of interactions

in covalent solids is not well understood and very often longer range forces 23,_

are arbitrarily neglected for convenience. Due to the complexity of the structural

chemistry of silicon and of the empirical nature of these potentials, the answer to

these questions is certainly not an easy task. We attempt here to partly address,

albeit indirectly, some of these issues by performing a comparative study of six

of the aforementioned potentials. We will not consider here the so-called
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valence-force potentials which can only describe small distortions from
equilibrium. Stoneham, Torres, Masri, and Schober 25 have performed a

comparison of eight such potentials for silicon.
The potentials considered in this study are those of Pearson, Takai,

Halicioglu, and Tiller (PTHT), 5 Stillinger and Weber (SW), 6 Biswas and
Hamann (BH), _o Tersoff (T2 and T3), 12.13and Dodson (DOD). 9 These

potentials differ in their degrees of sophistication, functional form, and range of
interactions; they thus constitute a good representative sample of existing
potentials. Only a few comparative studies of some of these potentials have
been performed. In general, these studies involved only a few of the potentials

mentioned here and were limited to some specific properties of silicon. Khor and
Das Sarma 26used SW, DOD, and the first Tersoff potential (T1) 8 in a study of
Si(100) surface reconstruction. Li, Chen, Allen, and Broughton 27 investigated
the energy and vibrational spectrum of the Si(111) 7x7 surface using SW and
T2. Halicioglu, Pamuk, and Erkoc 28studied Si2 - Si4 and reviewed the results of

some bulk and surface properties obtained with PTHT, SW, T1, and DOD.
Bartelt, Williams, Phaneuf, Yang, and Das Sarmas 29used SW, T1, and T2 to

model the orientational stability of silicon surfaces including (100), (111), (112),
and (113). Finally, Bolding and Andersen 20performed an extensive study of Si2

Sil0 and compared the results obtained using their potential with those
obtained via BH, SW, and T2. Their comparison for bulk and surface properties
was more limited.

Here, these potentials are thoroughly tested in a substantial region of
configuration space, including small clusters, bulk, and flat surfaces. A great

many results are new and, except for the bulk phonon frequencies, all those
results already published by other researchers have been reproduced here for
consistency and also because very often, they are incomplete. For instance, the
calculations for the bulk monovacancy are more complete here since, in
contrast to previous studies, we consider and report all possible configurations.

The calculations for clusters (Si2- Si6) were performed here with and
without the cutoff function. Results obtained via PTHT and DOD for Si5- Si6

and via T3 for Si3 - Si6 are new. For Si4, the present work (with PTHT and
DOD) is more complete than the study of Halicioglu, Pamuk, and Erkoc. 28
Bolding and Andersen 20performed calculations on Si2 - Sil0 using T3 but did
not report any specific result. Moreover, although studies were previously
performed using BH, SW, and T2, we identify here some new minima for Si4 -
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Si6. We considered several bulk point defects: monovacancy and four types of

interstitials, tetrahedral, hexagonal, bond-centered, and split or dumbbell. New

results are presented for all these defect structures (PTHT and DOD), for the

bond-centered interstitial (BH), and for the split interstitial (BH and T2). In

addition to the three elastic constants of the cubic diamond structure, we also

calculated here the pressure derivative of the bulk modulus, B', and Kleinman's

internal strain parameter, _. All calculations related to the elastic properties are

new for PTHT, BH, and DOD. The results for B' (SW, T2, and T3) and for

(SW and T3) are also new. For the bulk polytypes of silicon, we considered, in

addition to the cubic diamond phase, all structures for which ab initio data is

available. These are hexagonal diamond, BC-8, 13-tin, simple hexagonal, the

cubic phases, HCP, and the graphitic phase. In contrast to some previous

studies, 30 the c/a ratios of the 13-tin and all hexagonal phases were optimized.

We also calculated the bulk modulus of those structures for which ab initio

results are available, e.g., BC-8, [3-tin, simple hexagonal, and the graphitic phase.

The calculations performed with PTHT (hexagonal diamond, BC-8, and simple

hexagonal), BH (graphitic phase), SW (BC-8, 13-tin, simple hexagonal, and

graphitic phase), DOD (BC-8 and simple hexagonal), T2 (BC-8), and T3 (l_-tin

and simple hexagonal) are new. The results for the pressure-induced phase

transformations are new. Takai 30 reported that cubic diamond transforms under

pressure to the 13-tin phase but the c/a parameter of this structure was not

optimized. Also, Biswas and Hamann 10 reported a transition under pressure

from cubic diamond to simple cubic; we found here that this is only the second

transition, the first involves a compressed HCP structure. All results for surfaces

obtained with T3 are, in general, new. Other new calculations involving surfaces

are: (110) (all potentials except SW); (100) 2xl (PTHT); (100) c 2x2 (BH,

DOD, and T2); (100) Pandey defect structure (PTHT, BH, and T2); (111) 2xl

(SW); (111) 2x2 adatom covered structures (all potentials); (111)

(2n+l)x(2n+l) DS and DAS structures with n = 1 - 4 (all potentials except for

the 7x7 DAS surface with SW and T2). We also present results for the surface

stresses of all these surfaces. In general, our results are in agreement with those

already published by other researchers; however, there are some discrepancies,

in particular with those involving BH.

By a systematic comparison between these potentials, we identify similarities

and differences and attempt to find and understand their origins. We also assess

the transferability and accuracy of these potentials with respect to experiment
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and first-principles methods and discuss their limits and validity in quantitative
modelling of materials phenomena. This paper does not, however, address the

question of the theoretical justification or basis of interatomic potentials in
semiconductors. This question has been dealt with by Carlsson. 31,32 By

highlighting the strengths and weaknesses of these potentials and by presenting

such a large number of test results in a complete and clear manner, it is hoped

that it will help future users to select those potentials best suited for their needs

as well as help future researchers desiring to either improve on these potentials

or to develop new schemes.

The potentials are described in Sec. 2. The computational procedure is

discussed in Sec. 3. Results for small clusters, bulk phases, and flat surfaces are

presented and discussed in Secs. 4, 5, and 6, respectively. Section 7 is a review

of other potentials not considered in this work. Finally, a general discussion and

conclusions are presented in Sec. 8.

2 POTENTIALS

Following Carlsson's classification, 31 PTHT, BH, and SW will be referred to

as cluster potentials and the last three as cluster functionals. SW, DOD, T2, and

T3 are first-nearest neighbor models (second neighbor interactions are implicitly

included in the bond bending term). BH and PTHT include interactions up to the

third and seventh shell, respectively. We will sometimes refer to the former and

latter group as the short-ranged and longer-ranged potentials, respectively.

In order to have the units of energy and length in eV and A, respectively

(and also for our own convenience), the notation used by the original authors

has been modified. It is, of course, straightforward to recover the original

notation. Moreover, except for the PTHT and SW potentials, the parameters

listed in Table I are, or correspond to, those given in the original references. The

original parameters of PTHT and SW give a bulk cohesive energy for diamond

silicon of-5.45 and -4.34 eV, respectively. It is convenient for comparison

purposes to have a common basis which we choose as the experimental

cohesive energy and lattice parameter of diamond silicon (the lattice parameter

is predicted almost exactly by all potentials). Thus for PTHT and SW, both of

the original two- and three-body energy parameters are multiplied by the same

scale factor of 0.85 and 1.07, respectively. The scaling of the energies, in this

manner, does not affect the equilibrium structures previously determined. Note
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that vibrational frequencies must be multiplied by
factors.

2.1 Cluster Potentials

the square root of these

The cluster potentials model bonding with classical two- and three-body

potentials. The potential energy function gives the structural energy, E, which is

written as,

E=I._. 'V2(rij)+ Z'V3(rij,rik,rjk)

10 i,j,k

The primes indicate that all summation indices are distinct. Also because

V3(i,j,k) is symmetric with respect to an interchange of i, j, and k, the more

restrictive constraint, k > j > i, in the triple sum must be used with PTHT, The

condition k > j is used with BH and SW because V3 is symmetric in only j and k.

The parameters listed in Table I correspond to these conditions. In general, the

two-body potential is given by,

V 2 (r)= fc (r) (Alq°I (r)- A2q_ 2 (r))

where fc is a cutoff function and _0s is a decaying function of r. The three-body

potentials have different forms and will be given separately for each potential.

2.1.1 The PTHT potential

Pearson, Takai, Halicioglu, and Tiller 5 used the Lennard-Jones and Axilrod-

Teller potentials for the two- and three-body terms, respectively. The potential is

cut abruptly to zero at the cutoff radius, Rc. In our notation, the functions are:

fc(r) = 1 if r < Rc

-- 0 otherwise.

Cps(r) = r -ks s = 1,2 (1)
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V3(rij,rik,rjk) = Z _(rij) _(rik) _(rjk) g(Oi,0j,0k)

_(r)= fc(r)
r 3

g(0i,0j,0k) = 1 + 3 cosei COS0j COS0k

0i is the angle subtended at atom i by atoms j and k; 0j and Ok are defined in a

similar manner as shown in Fig. 1.

There is, of course, no theoretical justification for using these potentials (in

particular the Axilrod-Teller potential) to describe bonding in a covalent

material. 5 These particular functional forms were chosen for purely pragmatic

reasons and must, therefore, be viewed only as fitting functions. While the PTHT

potential is not flexible enough (particularly with respect to the second

derivatives), it is appealing because it has only three adjustable parameters (four

if the cutoff radius is included; _.1 and )_2 are fixed). This fact can be more

appreciated when binary or ternary systems are considered.

The parameters were fitted to a minimal database containing the bond

lengths of the dimer and trimer and the lattice parameter and cohesive energy of

the diamond structure. 30 The parameterization was done using infinite lattice

sums (Rc = ,,_). All results presented in this work correspond to Rc = 7.3 .&

which yields results virtually indistinguishable from those obtained using an

infinite cutoff radius. V2(r) is essentially zero at 7.3/_. Reducing Rc to 5/_., i.e.,

including interactions up to third neighbors only, changes the lattice parameter

by less than 0.5%, the bulk cohesive energy by 4% and the elastic constants by

less than 10%. Similar changes are expected for surfaces, e.g., for the (11 1) lxl

surface, the changes are 2%, 3%, and 9% for the first interlayer contraction, the

surface energy, and surface stress, respectively. These changes are much

larger if the potential is cut below the third shell. Also, the energetics of those

surface defects which induce strong atomic distortions, e.g., surface vacancy

and some types of steps, are much more sensitive to the cutoff radius.

The PTHT potential has been extensively used to study bulk phase

transitions, 33 surface reconstructions, 30,34-37 surface point defect formation and

diffusion, 30,34,38 step reconstruction and interaction 35,39 and their effects on two-

dimensional nucleation. 39 The same potential has been extended to binary and

ternary systems, e.g., GaAs, Si-GaAs, and A1-GaAs. ,m_2
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2.1.2 The Biswas-Hamann potential (BH)

This potential is a simpler version of the original BH potential. 7 The three-
body potential is separable. Biswas and Hamann l0 used Gaussians for the radial

functions and a Fermi-like function for the cutoff function. These functions are:

( ofc (r) = l+exp ifr < Rc

= 0 otherwise.

_os(r) = e -_'s r2 s=l,2

2

V3 (rij ,rik, 0i ) = _ Zs_gs (rij)_gs (rik)gs (0i)

s=l

r 2
Xgs(r) = e "as fc(r)

gs(0i) = (cos0i- cos0o) s+l

In the original paper, l°t_ was written as Rc suggesting that it is the cutoff

radius; In fact, fc is 0.5 when r = cr (for any value of It) and 0.03 when r = 5.0 ._.

However, the results do not seem to be sensitive to Rc as long as Rc > _. For

instance, the lattice parameter and cohesive energy of the diamond structure

are 5.4126 A and -4.6267 eV when Rc is equal to t_; they are 5.4318 and -4.6045

at 5.0 ]_ and at 3.0 A they are 5.1565 and -4.9748. All the results presented

here were obtained with Rc = 5.0/_,. V2(r) is essentially zero at this value. We

have not used the separability of the three-body potential. Compared to the

original notation, we have Zs = 2Bs. The fitting database included the cohesive

energies of a set of bulk phases, the formation energies of self-interstitials, and

the surface energy of diamond Si(111) lxl and of metallic simple hexagonal and

cubic (100) surfaces obtained from an ab initio LAPW calculation, lo This

potential has been used to study microclusters and bulk point defects, so

amorphous silicon, 43 cluster and atom deposition on Si(111), _ amorphous and

epitaxial film growth on Si(111), 45 and surface reconstruction. 37



2.1.3 The Stillinger-Weber potential (SW)

The radial function, q_s, is given by (1). The other functions are:

fc(r)=exp/ I't/r_Rc ifr<Rc

= 0 otherwise.

V3(rij,rik,rjk) = Z Ig(rij) Ig(rik) g(0i)

Ill(r) = [fc(r)] t_

g(Oi) = (cos0i- cos0o) 2

Compared to the original notation, 6 we have A1 = CABaP, A2 = EAaq, Z = E_.,

Rc = aa, and I.t = c_. Note that, besides acting as a cutoff function, fc defines the

attractive branch of V2 (since _-2 = 0) and the radial functions of V3; therefore,

the results are very sensitive to variations in Rc. Stillinger and Weber fitted the

parameters to the lattice constant and cohesive energy of the diamond structure

with the added constraint that the melting point and the structure of liquid silicon

be well described. SW is by far the most widely used potential. It has been used

to study clusters, _,47 lattice dynamics, 27,48,49 bulk point defects, 50 the liquid 6,51

and amorphous 52-55 states, surface diffusion 56.57 and reconstructions,

26,27,29,37,58,59 Si(100) stepped surfaces, 60 the liquid-vapor 61 and crystal-melt

interfaces, 51,62 pulsed melting of surfaces, 63 epitaxial growth from the vapor, 64-

66 liquid-phase epitaxy, 67-69 and growth of amorphous films via atom deposition.

70 This potential has been extended to Ge, 61,71 sulfur, 72 fluorine, 73 and the Si-F

system. 74

2.2 Cluster Functionais

All the cluster functionals considered here are of the Tersoff type. In this

scheme, bonding is modeled with pairwise interactions but with the attractive

term depending on the local environment which effectively includes many-body

interactions. 8,12 The structural energy has the form,
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1 , (A )-A 2 ) P(_ij))E=_E fc(rij) 1 _l(rij q°2(rij
• •

1,J

(2)

where p is a measure of the bond order and is a function of the effective

coordination number, _ij, given by,

_ij = EV3 (rij ,rik ,0i )

k¢i,j

V3 (rij, ri_, ei ) = _I/(rij, ri_ )g(ei )

Note that, in general, p(_ij) _: P(_ji). The two-body energy can be extracted from

E by rewriting (2) as

E=_- V2 (rij) +- _ A2 _P2 (rij)fc (rij) (1- P(_ij))

1,j 1,J

(3)

If [1 - P(_ij)] is replaced with a Taylor expansion about some reference it can

be seen how this scheme effectively includes many-body interactions. 75 We will

refer to the second term in (3) as the three-body energy.

Brenner 76 showed that the Tersoff formalism is similar to the embedded

atom method. 4 The two expressions for the structural energy can be made

identical with the proper choice of functional forms and parameters.

2.2.1 The Dodson (DOD) potential

This potential is a simple modification of the first Tersoff potential, s The

functions are:

fc(r) = 1-cos if Rc-l.t<r<Rc
_t

= 1 if r---Rc-p

= 0 otherwise.

(4)
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qOs(r)- e-xs'r s = 1,2 (5)

P(_ij) = exp[-_ij n]

cP2(rik)fc (rik) 1a

q02 (rij)fc _rij') )

g(ei)=
+ e-&:°s0i

To determine the parameters, Dodson used the lattice parameter and cohesive

energy of the diamond cubic, simple cubic, BCC, FCC, and HCP structures, the

bond length and energy of the dimer, and the bulk modulus of the diamond

structure. To our knowledge, this potential is perhaps the least tested compared

to the others. It has been used to study low-energy beam deposition of silicon 77

and surface reconstruction. 9,26,37

2.2.2 The Tersoff potentials (T2 and T3)

T2 and T3 correspond to two different parameterizations of the same

potential, fc and q_s are given by (4-5), respectively. The other functions are:

1

p(;ij) = (1 + ;ijn )_n

_(rij,rik) = fc(rik).exp[a3.(rij - rik) 3]

1.12 1-12
g(Oi)=]3 + _-

52 52 +(cosO i - COS0o) 2

The potential parameters were determined by fitting to a database containing

the cohesive energy, lattice parameter, and bulk modulus of the diamond

structure, and the cohesive energy of bulk polytypes of silicon. 12,13 For T3, an

additional constraint was added in order to reproduce the three elastic constants

to within 20%. a3 T2 and T3 were used to study microclusters, 2o lattice
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dynamics, 12,13,27bulk point defects, 12,13,78the liquid 12,13and amorphous 13,54
states, surface reconstructions, 12,13,27,29,37and low-energy beam deposition on

Si(100) 2xl. 79This potential was also extended to carbon 80and to the systems
Si-C and Si-Ge. 81,s2

2.3 Discussion

The two-body functions V2(r) are plotted in Fig. 2. The open circles

correspond to an accurate ab initio calculation (based on MRCI) of the energy

of the ground-state of Si2.83 The T2 and T3 curves are very similar for r _< 2.7

A. The attractive branches of the BH and SW curves are also similar over the

range 2.4 < r < 3.0 A. While the shapes of these curves are different, in general,

they all have about the same depth with the exception of DOD which is much

stronger. The PTHT curve is the steepest with the largest curvature at the

equilibrium bond length; this is reflected in the large values of the vibrational

frequency of the dimer and the bulk elastic constants. Note the small bump on

the curves of the cluster functionals; this is due to the abrupt cutoff function.

The angular dependence, g(0), of the three-body potentials is shown in Fig. 3.

The PTHT function is very different from the others; it is the only function which

is negative for 0 >_.117 ° resulting (in a few cases) in negative three-body

energies for configurations with large bond angles. The DOD curve is a

monotonic decreasing function of 0 with a minimum at 180 ° like the PTHT

curve. The other curves have the same shape with a minimum at 0 = 0o. The

T2 curve has a very shallow minimum at 0 = 90 ° and is symmetric with respect

to that angle. For BH, since am and o_2 are almost equal, gl(0)(1 + (ZffZ1)g2(0))

is plotted to show the effect of the cos30 term which is negligible as shown in

Fig. 3. A better comparison of the three-body potentials is provided in Fig. 4

which shows the variations of the three-body energy with angle 0 for a triplet of

atoms i, j, and k (Fig. 1) with rij = rik = 2.351 ]_ (the equilibrium bond length of

the diamond phase) and 0i = 0. The three-body energy for the cluster functionals

is defined as the second term of (3). What is actually plotted in Fig. 4 is the

contribution of atom i to the total three-body energy of the triplet. There is no

curve for T2 because this energy is essentially zero (on the scale of the plot) for

the apex atom in an isoceles triangle; the total three-body energy does not,

however, vanish (for 0 < 40 °) because of the contribution of atoms j and k. One

immediate consequence of this is that T2 will favor triplet configurations leading

12



to an equilateral triangle thus making the total energy almost completely
controlled by the two-body potential. PTHT is the most repulsive for small
angles less than about 45°, and SW and DOD are stronger than the other
potentials for 0 > 135° and 50° < 0 _< 140 °, respectively. One very important

result to be discussed later is that all these potentials handle rather well small

angular distortions around the tetrahedral angle and, to a lesser extent, those

leading to angles somewhat larger than 109 °, but with the exception of T2, they

completely fail when dealing with small angles (< 80o). This is fully reflected in

the curves of Fig. 4. Finally, the large variations displayed by these functions

makes a comparison between the potentials very difficult, indeed.

3 COMPUTATIONAL PROCEDURE

Unless indicated otherwise, all results presented here are static, i.e., T = 0 K.

In the static limit, we use the so-called potential approximation where we only

deal with the mechanical equivalent of the true thermodynamic properties. 84

The total energy was minimized using a conjugate gradient technique. The

minimization is stopped when the force on each atom is at most 0.001 eV/A

(typica/ly 10 -4 eV/A). Note that, in general, energies converge more rapidly than

stresses. For surface calculations, we used fixed atoms to simulate a rigid

underlying substrate and used enough moving layers to minimize the interaction

between the exposed surface and the moving-fixed interface.

The surface energy per unit area, y, is defined as,

1(E-NEc) (6)

where E is the total energy for the simulation of N atoms with bulk cohesive

energy Ec and A is the area of the exposed surface.

The total stress xa_ is given by

1 0E

where V is the volume of the system, ot and 13 represent any two of the

cartesian coordinates and ea_ is the Lagrangian strain tensor. Since the total

potential energy and the stresses are given as a sum of contributions of each
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atom in the system, it is natural to define an atomic energy, e(i), and stress,

Xa_(i), such that

1

E=Ee(i) and xct_=VEXctl3(i)
i i

While the definition of the atomic energy and stresses appears to be arbitrary,

the availability of the energy and stress distributions can be very helpful in

analyzing complex defect structures. 34,82 Also, they are helpful in assessing any

finite-size effect which can be present in the calculation. For example, well

away from a defect, e.g., at a surface, the atoms must be representative of the

bulk environment; this can be readily checked by looking at these distributions.

A two-dimensional surface-stress tensor, 0_13, can also be defined to further

characterize the surface, 85,86

10(AT)

OaB = A Oea[3 = 7_5al3+ _0eal3 (7)

where 8a_ is the Kronecker delta. For a liquid, the strain derivative in (7)

vanishes, and the surface stress, called surface tension, is numerically equal to

the surface free energy. For a solid surface, 0y/Oea_ can be positive or negative

and can thus lead to a tensile or compressive surface stress. Also, as shown for

the (100), (110), and (111) 2xl surfaces, oa_ is not necessarily isotropic.

Unless indicated otherwise, all surface energies and stresses will be given in

eV/Ixl cell (for simplicity, we will sometimes drop the per lxl cell). To obtain _,

and oa_ in eV/]_2, divide by the area of the lxl primitive surface cell. Also,

surface energy will refer to the value calculated from (6); the relative energy of

a relaxed or reconstructed surface is, in general, its surface energy relative to

that of the ideal lxl surface.

For point defects, we calculated defect energies both at constant volume and

constant zero pressure. For both cases, the reference is the perfect diamond

lattice (pressure, P = 0; atomic volume, f2 = _e) so that the formation energy,

Ef is given by,

E f: E- (N + 1) Ec
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where E is the total energy for the simulation of (N + 1) atoms, +1 for a single

interstitial and -1 for a monovacancy. We used a large cell containing (980 + 1)

atoms and the cartesian coordinate system was taken as _ = [1T0], _ = [00T],

and _. = [110]. Periodic boundary conditions are applied in all three directions in

order to simulate a bulk environment. For the constant volume calculation, the

cell with a defect has to be compressed (vacancy) or expanded (interstitial) to

bring the atomic volume to the equilibrium value, De. This is done by scaling the

lattice parameter by the factor (1 + l/N) 1/3. For N - 980, the change in lattice

parameter is only + 0.03% but it is :1: 0.5% for N = 64. To simulate a constant

pressure one would normally use molecular-dynamics or Monte Carlo methods.

But these methods are much more time-consuming than a static method. If one

is only interested in studying pressure effects at zero temperature on equilibrium

structures, it is desirable to devise a static method where the volume is a

variable. We have implemented the conventional method used in isobaric Monte

Carlo simulation s7 into our static program code.

In the "constant volume" static method, the objective function is the total

energy E{r} and the variables are the 3N atomic coordinates {r} in the system

of N atoms. The volume, V, of the computational cell is held fixed. In the

"constant pressure" version, the enthalpy H{p,V} = E{p,V} + PexV is minimized.

There are now (3N + 1) variables which are V and the 3N dimensionless

atomic coordinates, {9 = v'l/3r} • The externally applied pressure, Pex, is set to

zero in this work. Note that, like the atomic coordinates, the periodic boundary

vectors must be scaled by V "1/3 at each iteration step. In practice, we found it

necessary to constrain the volume to vary within a prescribed range.

Because very often experimental data are lacking, people involved in

atomistic computer simulation rely heavily on results obtained from first-

principles calculations, not only for comparison purposes but also for use as

input for the parameterization of the interatomic potential. In this work, only the

properties of Si2 and those of the perfect diamond lattice are directly compared

to experiment. Other bulk and surface properties are compared to results

obtained from ab initio calculations using mostly the self consistent

pseudopotential method within the local density functional theory (simply

abbreviated DFT from now on). Results for Si3 - Si6 are compared with those

obtained from an ab initio molecular orbital calculation, ss
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Very often the ab-initio data are obtained from different sources, i.e., different
techniques or calculations performed with different input calculational
parameters. While the DFT method is certainly one of the most accurate
theoretical tools for the calculation of the ground-state properties of solids, 1,89it
is important to keep in mind such differences in the data when making

comparisons. Furthermore, for the parameterization of the interatomic potential,
it is critical to use consistent and compatible data especially when used in
conjunction with some experimental data, which is often the case. While several
input calculational parameters can affect the result of the calculation (care is
generally taken to minimize the effect of most of them), the plane-wave cutoff

energy, Epw, is the limiting factor. Structural parameters, e.g., the lattice
parameters, are weakly dependent on Epw, but energies converge more slowly
below about 10 Ry. 89-92Typically, Epw is about 6 Ry. The effect of Epw can be
appreciated by considering the calculation of the energies of adatom-covered
Si(lll) surfaces. Northrup 93 performed a calculation at 6 Ry and he

successfully determined that the T4 adsorption site is energetically favored over
the H3 site (both sites have three-fold symmetry but the T4 adatom has a
second-layer atom directly below in contrast to the H3 adatom which does not).
He also found that the _3x_3 structure was more stable than the 2x2 structure.

In fact, the opposite was found to be true by Meade and Vanderbilt who
performed a more accurate calculation at 12 Ry. 91Other examples are provided

by the formation energies of bulk point defects in silicon for which extensive
calculations lead to uncertainties of up to 2 eV 21,32,94-96 and by the energy of

buckled and symmetric dimers on the Si(100) surface for which seemingly

similar calculations lead to opposite results (see Sec. 6).

4 CLUSTERS

The only accurate experimental data for silicon clusters are the bond length,

bond energy, and vibrational frequency of Si2 97 and the binding energy of Si3.88

No experimental data on the structures of Sin (n "e_3) is available. However,

accurate ab initio calculations have been performed on microclusters. 88,98

Raghavachari (KR) performed an ab initio molecular-orbital calculation and

considered several configurations and electronic states for each Sin cluster (n =

2 - 6) in order to determine the ground-state structures. 88 The ground-state

structures were found to be somewhat compact with an average bond length of
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about 2.28 ti, (shorter than the equilibrium bond length of the diamond structure)

and bond angles in the range 60 ° -90 °. These structures are significantly

different from the configurations derived from microcrystal fragments. These

latter lie much higher in energy than the former. The lowest-energy structures

for Si3 - Si6 are the isoceles triangle, rhombus, trigonal bipyramid, and edge-

capped trigonal bipyramid, respectively. Each cluster can be formed from the

previous one by attaching an extra atom at an edge- or face-capped site. These

Sin structures are three-dimensional in nature for n _> 5. At the level of theory

considered and based on the experimental data of Si2 and Si3, KR estimated that

only about 80 % of the binding energy of these clusters is recovered. He, thus,

scaled the binding energy of all the clusters by the same factor of 1.2. The

energies given in Tables II-III are the scaled values.

Several studies on small silicon clusters were performed using some of the

potentials considered here. Halicioglu, Pamok, and Erkoc 28 used the PTHT, SW,

and DOD potentials for a limited study on Si2 - Si4. Biswas and Hamann 10 used

their potential along with a combination of steepest descents and simulated

annealing techniques to determine the low-energy structures for Sin clusters (n

= 3-6, 10, 32). A molecular dynamics simulation of Sin clusters (n = 3-17, 32)

was performed by Blaisten-Baroja and Levesque using the SW potential. ,,6 Both

neutral and positively charged clusters were examined. Feuston, Kalia, and

Vashista 47 also used the SW potential to study the fragmentation of Sin clusters

(n = 2-14) with a molecular dynamics technique. Bolding and Andersen 20

performed a calculation on Si2 - Sil0 using BH, SW, T2, and their own potential.

We have performed our own calculations on Si2 - Si6 using all six potentials

along with a static method. For each potential, except SW, calculations were

carried out with and without the cutoff function. Because simple minimization

energy techniques are not adequate for finding global minima, we have

considered many configurations for each cluster; this includes all geometries

considered in previous studies as well as several other structures such as a

planar C2V form for Si5 (edge-capped rhombus) and a Csv form for Si6

(pentagonal pyramid) as illustrated in Fig. 5. Moreover, many asymmetric

structures derived from each of these configurations were optimized. Our results

of the calculations with the cutoff function are summarized in Tables II-III.

Since the energy of atoms infinitely separated is taken as zero, the binding

energy, EB, is the absolute value of the total potential energy as given in Sec. 2.

4.1 Si2 and Si3
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The equilibrium bond length, re, binding energy, De, and vibrational frequency,
COoof the Si2 dimer, as obtained from the six potentials are shown in Table II.

Most potentials used re in the fitting database; it is, therefore, well reproduced

by most of them. The largest discrepancy of 5% in re occurs with SW. De is less

well described with a discrepancy ranging from 12% for DOD to -29% for SW.

The best description of coo is obtained with DOD; PTHT overestimates it by

50% and the other potentials underestimate it by about 10%.

The ab initio calculations predict that the lowest-energy configuration for Si3

is an isoceles triangle with an apex bond angle of 77.8 ° and bond length of 2.165

/t, which indicates strong multiple bonding character. 88 It was also shown that

the linear structure is only a saddle point on the potential energy surface of Si3

and that there is also a low-lying state which lies only a few kcal/mol higher in

energy; its structure is an equilateral triangle with bond length of 2.263/_,. None

of the potentials predicts the correct ground-state structure of Si3 (see Table II).

As expected from Fig. 4, PTHT, T3, and DOD predict a trimer with bond angle

of 180 °, 126.75 °, and 180 °, respectively, i.e., the angle at which the three-body

energy is a minimum. These three potentials correctly predict the second

minimum; they, however, overestimate the bond length. Not surprisingly, as

noted in the previous section, T2 predicts an equilateral triangle as the ground-

state structure of Si3. SW and BH were expected to predict an isoceles triangle

with a bond angle equal to the tetrahedral angle as the lowest-energy structure

which turned out to be an equilateral triangle. BH like T2, does not, however,

predict a second minimum. With T2, the bond length and binding energy of Si3

are constant at 2.31 /_ and 5.25 eV for angles larger than 88 °. The calculation

performed without the cutoff function shows that, for this potential, there is, in

addition to the same global minimum, a shallow local minimum corresponding to

a linear structure with EB = 5.2463 eV and a bond length of 2.31 /_, (the

maximum between these two minima occurs at 120 ° with EB = 5.2419 eV).

4.2 Si4, Si5, and Si6

The first three lowest-energy structures for Si4 - Si6 are presented in Table

III. Some of the structures are illustrated in Fig. 5. The hexagonal chair and the

chain are crystal fragments when 0 = 109.5 °. In the corner-capped triangle, r34

is slightly different from r13. The rhombus in the corner- and edge-capped
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rhombus is somewhat distorted. For both the trigonal bipyramid and square
pyramid, there are two different geometrical arrangements, a flattened and an

elongated form. r15 < r12 in the flat square pyramid and r15 > r12 in its
elongated form; atoms 1, 2, and 3 are bonded to each other in the elongated
trigonal bipyramid while they are not in the corresponding flattened form. The
wedge is a symmetrical stacking of two equilateral triangles. The orthorhombic
bipyramid can be viewed as two edge-sharing distorted tetrahedrons. With
PTHT, atoms 1 and 2 are bonded to each other in the asymmetric structure. For

the linear structures, the numbering of atoms is from one end to the other as in
Ref. 88.

Let us first discuss the ground-state structures. Only PTHT correctly
describes the ground-state structure of Si4, i.e., the rhombus. This structure is
predicted to be a local minimum on the potential energy surface by DOD and
T2. With BH, SW, and T3, it is not a minimum. For Si5, the quantum ground-
state structure, e.g., the flat trigonal bipyramid, is a local minimum with all

potentials (EB = 10.78 eV with PTHT and 12.03 eV with DOD). The edge-
capped trigonal bipyramid, which is the global minimum on the quantum
potential energy surface is only a local minimum on the surface generated with
PTHT (EB = 14.18 eV), BH (15.26), SW (14.95), DOD (14.89), T2 (23.08), and
T3 (13.13). For the first three potentials, the structural parameters of the
optimized structures are very different from those of the quantum structure.

For a potential to be useful in studies of clusters, it should, as pointed out by
Bolding and Andersen, 20give at least a fair representation of the entire potential
energy surface. That is, it should not only fairly descibe the energies and

structures of global and local minima but also, and perhaps more importantly, not
predict spurious minima (minima which do not exist on the quantum potential
energy surface). In addition to the global minima, there are three, three, and one
known local minima on the ab initio potential energy surface for Si4, Si5, and Si6,
respectively. Not listed in Table III are the pyramid (EB = 9.14 eV) for Si4, and
the pentagon (EB = 12.10 eV, r = 2.39 ,/_)for Sis. KR also reported that, for Si5,
the linear structure and the tetrahedral crystal fragment lie higher in energy than
all the other structures and that the former has a larger EB than the latter, s8 It is

not known whether these two structures are minima.

For Si4, all potentials predict that the tetrahedron is a minimum while the

D2d structure is not. The pyramid is predicted to be a local minimum only by

SW; however, its apex angle is 109.5 ° (a crystal fragment) compared to the
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value of 78° for the quantum structure. This structure is degenerate in energy
with the chain (another crystal fragment). For Si5, structures that are predicted

to be minima are: the elongated trigonal bipyramid by PTHT (EB = 10.75 eV),
T2, and T3 (9.83 eV); the flat square pyramid by T2; and the pentagon by all

potentials (for T2, EB = 13.12 eV, r = 2.31 /I,). For Si6, only BH and SW predict

that the hexagonal chair is a local minimum; however, the bond angle is 107.2 °

and 109.5 ° , respectively. The value for the optimized quantum structure is 93.6 ° .

We now consider the spurious minima. KR determined that the following are

not minima on the quantum potential energy surface: for Si4, the corner-capped

triangle (EB = 10.63 eV), the square (10.61 eV; r = 2.32 ]_), and the linear

structure (8.75 eV); for Si5, the elongated square pyramid (16.16 eV; r12 - 2.30

_, r15 = 2.50/_,); for Si6, the face-capped trigonal bipyramid (21.87 eV) and the

tetragonal bipyramid (21.48 eV). The following structures are thus spurious

minima: the square, the corner-capped triangle, and the linear structure (all

potentials); the elongated square pyramid (all potentials except T2); face-

capped trigonal bipyramid (DOD, T2, and T3); the tetragonal bipyramid (T3).

Finally, we should mention that, with all six potentials, we have found many

more local minima (about 15 overall for each potential) which, in general, are

close in energy.

PTHT and DOD favor planar structures. In fact, PTHT and DOD give rather

similar descriptions of the structures of the small Sin clusters. This is consistent

with the similar monotonic angular variations of the three-body energy for

relatively larger angles. The most similar potentials are BH and SW. Both

predict the same ground-state structure for each cluster. BH gives slightly larger

binding energies and smaller bond lengths than SW. T3 is also close to BH and

SW. It predicts the same ground-state structures (with similar bond lengths and

binding energies) for Si4 and Si5. There are more similarities between T3, BH,

and SW if all minima for Si4, Sis, and Si6 are considered. That BH and SW and,

to lesser extent, T3 are similar can also be traced back to the behavior of the

corresponding three-body potentials as shown in Fig. 4. Note the tendency for

T3 to also favor planar structures. As expected from our earlier discussion, T2

favors structures which lead to triplets forming an equilateral triangle or close to

it. For example, for Si4, the tetrahedron and rhombus are actually 4 and 2 edge-

sharing equilateral triangles, respectively. All three minimum energy structures

and also the trimer structure have the same bond length of 2.31 /_, i.e., the

equilibrium bond length of the dimer. It is this discrimination in favor of
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structures having equilateral triangles as their building blocks which leads to
three-dimensional configurations in agreement with the ab initio calculations. In
fact, T2 is the potential that provides the fairest overall agreement with the ab
initio calculations.

In order to compare the cluster binding energies, a plot of the binding energy
per atom versus the number of atoms in the cluster is shown in Fig. 6. The
curve labeled KR corresponds to the scaled energies of the ab initio calculations.
The similarity noted above for BH, SW, and T3 is also apparent in the binding
energy. The PTHT curve is very similar to that of these potentials. The DOD
potential, which showed similarities with PTHT for the structures of the Sin

clusters, leads to larger binding energies than PTHT because its two-body
potential is stronger. Compared to the scaled ab initio results, PTHT, BH, SW,
DOD and T3 generally underestimate the binding energy of the Sin clusters

while T2 overestimates it. Note that, for T2, the energy per atom is increasing
with a relatively large slope and it is already 4.42 eV for n=6, i.e., very close to
the bulk cohesive energy. This is a direct consequence of the fact that the bond
bending forces are very small; thus T2 favors close packed structures because
the total energy is almost totally controlled by the two-body potential. A best fit

with the KR curve can be obtained for the binding energies by using a scaling
factor of 1.43, 1.40, 1.47, 1.15, 0.85, and 1.39 for PTHT, BH, SW, DOD, T2, and

T3, respectively. However, this will also change the bulk and surface energies

and it will not change the fact that the equilibrium configurations are, in general,

in disagreement with the ab initio results. To compare the relative stability of

these clusters, and thus look at the possibility of magic numbers, one needs to

perform a calculation of the fragmentation energy, Efr. This is the smallest

energy involved in the dissociation of Sin into Sin-m + Sim. An accurate

determination of Efr involves the investigation of all possible fragmentation

channels. KR determined that Efr corresponds to the process Sin --> Sin-1 + Si

and confirmed the presence of the magic numbers 4 and 6.88 Using SW,

Feuston, Kalia, and Vashista ,17 also found the same fragmentation process for

Sin (n = 2 - 14) and that SW do give the magic numbers 4, 6, and 10. The kind

of extensive study performed in Ref. 47 is beyond the scope of this work.

However, assuming the same process as in Refs. 47 and 88, we find, for Si2 -

Si6, that Si4 is more stable than the other clusters with BH, SW, and T2. PTHT

and T3 give more stability to Si5. With DOD, no cluster shows extra stability as

indicated by the almost linear curve in Fig. 6.
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All the results presented thus far were obtained with the cutoff function
included with the potentials. We have also performed the same calculations with
no cutoff; the cutoff function in SW is an integral part of the potential. The two-
body potential function without the cutoff function , i.e., q(r) = V2(r)/fc(r), is
essentially zero at r = Rc for PTHT and BH. q(Rc)/q(re) is 0.42, 0.47, and 0.54

for DOD, T2, and T3, respectively. As expected, there is very little or no change
in the results obtained with PTHT and BH. For the cluster functionals, there are

little changes in the structural parameters, somewhat larger variations in the
binding energies (particularly for T3), and some minor changes in the relative
position of the minima. The global minimum of Si4 is now the rhombus for T3

and that of Sis is now the flat square pyramid for T2. The largest variations
were obtained with T3 but they are not large enough to change the overall
picture presented thus far.

Finally, It should be mentioned that, while our results agree with the works of
Refs. 20, 28, 46, and 47, there is some conflict with the work of Biswas and

Hamann. 10First, the binding energies listed in Ref. 10 are consistently slightly

larger (less than about 0.1 eV/atom) than the values presented here. The
structure of Si3 is in total disagreement; they found an isoceles triangle with 0 =
79°, r = 2.29 _, and EB = 5.10 eV. Our result agrees with that of Ref. 20. With
BH, we found all minima reported in Refs. 10 and 20 and many more. Our

results for T2 are in agreement with those of Ref. 20 and here again we found

other minima.

In summary, the ab initio calculation 88 predicts that, for Si3 - Si6, there are

overall twelve structures which are minima and seven which are not (there are

probably many more than that). Considering these nineteen structures and using

a simpler version of the rating scheme of Bolding and Andersen, 20 a potential

will predict (m,n) minima with 0 < m _< 12 and 0 < n < 7 being the number of

correct and spurious minima, respectively. The rating of the ab initio calculation

is (12,0). It is (8,4), (8,4), (6,4), (7,5), (7,6), and (6,6) for T2, SW, BH, P'IT-IT, T3,

and DOD, respectively. The most serious limitation of these potentials is that

they predict many spurious minima which are either global or close in energy to

the correct global and local minima. A positive note is that, in general, these

potentials do predict, like the ab initio calculations, that the structures derived

from crystal fragments are not energetically favorable even though the

potentials were built from crystal data. Within the framework of classical

interatomic potentials applied to covalently bonded materials, it is the delicate
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balance between the radial and bond bending forces which determine the

equilibrium structure and the energetics of any system of atoms, e.g., clusters,
bulk phases, or surfaces. The fact that these potentials do not describe correctly
the equilibrium structures of the silicon clusters indicates that such a balance is
not adequate at this point.

5 BULK PHASES

5.1 Crystal Stability

In addition to the cubic diamond structure (a = 5.429/_,; Ec = -4.63 eV/atom),

silicon may exist in several simple and complex metastable structures. 89These

phases have been observed experimentally and most of them result from
pressure-induced phase transformations. They are: hexagonal diamond which
has the same density as cubic diamond (c/a = 1.653 ; a = 3.80/_), [3-tin (c/a =
0.552 ; a -- 4.686/_,), BC-8 (x = 0.1003 ; a = 6.636/_), simple hexagonal (c/a =

0.94 ; a = 2.527/_), HCP (c/a = 1.698 ; a = 2.444 ti0, 99 and FCC. 10o Hexagonal

diamond is formed with a combination of high-pressure and heat treatments. 89

The BC-8 structure is observed upon unloading to atmospheric pressure from

the high-pressure [3-tin phase, lol The other phases are the result of high-

pressure phase transformations in the pressure range 0-800 kbar. 99300 They

occur in the sequence cubic diamond --> l-tin --> simple hexagonal --> HCP --

> FCC with increasing pressure.

Accurate DFT calculations have been performed on these structures as well

as some other hypothetical phases, e.g., simple cubic, BCC, and graphitic

structure. 99 The DFT database has been very useful not only as input for the

parametrization of the potentials but also for comparison purposes when

experimental data are unavailable as is often the case. To test for crystal

stability, and as further comparison between the potentials, we performed

calculations for all the structures mentioned above as well as for several two-

dimensional structures. The axial ratio, c/a, of hexagonal diamond, I]-tin, simple

hexagonal, HCP, and graphitic silicon as well as the internal parameter, x, of

BC-8 were optimized. The results for the optimized structures are shown in

Table IV. In the DFT calculations the c/a ratios of the hexagonal diamond, HCP,

and graphitic structures were not optimized. 89,102
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All potentials, but PTHT, predict the cubic diamond phase as the most stable
structure. The major result here is the unfortunate finding that with PTHT the
lowest-energy phase is the simple hexagonal structure instead of cubic diamond.
The axial ratio of 2.87 is so large that there is negligible interaction between the
hexagonal layers. The second lowest energy structure is not even cubic
diamond but a squared two-dimensional structure with a = 2.32/_ and ZkE= Ec -

Ec(cubic diamond) = -0.22 eV/atom. This finding stressesthe need, when testing
for crystal stability, for considering all plausible phases including planar
structures. When PTHT was first developed, crystal stability was tested with a
minimum number of structures. 30This situation is certainly not unique. As an

example, the same problem occurred with the first potential developed by

Tersoff. 8 Despite this pathology, we will continue in the next sections to present

results obtained with PTHT because, as we will show throughout, this potential

yields in most cases similar results to those obtained with DOD.

Crystal stability is the first requirement any potential must fulfill for it to be

useful, _on If the potential gives as the most stable structure a phase other than

the experimentally observed one, it cannot be used, in general, and particularly

for melting and growth simulations. However, it can, perhaps, be used for a

limited number of structural calculations in regions of phase space away from

the pathological configuration; but one has to remain skeptical of such

calculations. When the most stable structures are planar structures, as in the

case with PTHT, one can easily foresee situations where the use of such a

potential could lead to trouble. For example, in an unconstrained simulation

involving (100) or (111) surfaces and where the lateral dimensions are relaxed,

the layers making up the slab could break away if the temperature is high

enough to overcome the energy barrier preventing bond breaking. In fact, this

pathology is perhaps responsible for the results of the simulation of thin

amorphous silicon films on crystalline silicon substrates performed by Erkoc,

Halicioglu, and Tiller _05 They found that the dominant structural feature was a

dense free surface skin with a void layer underneath for Si (100) and (111)

substrates.

A good fit to the energy of the hexagonal diamond phase is important

because there are direct implications on the energies of stacking faults and of

the Si (111) 7x7 surface. The DFT calculation shows that AE = 0.016 eV/atom

in agreement with the observation that the cubic and hexagonal diamond phases

are closely related and with the small experimental stacking fault energies in
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silicon along the <111> direction, e.g., 50 - 60 erg/cm2. 1o6BH gives the best fit

with a c/a ratio slightly greater than the ideal value in agreement with the
experimental value. PTHT gives a vanishingly small AE. The other short-ranged

potentials, being first-nearest-neighbor models, give, as expected, a zero AE.
The BC-8 structure is of particular interest because it provides information

about bond-bending forces. This phase has a BCC structure with 8 atoms per
unit cell; it has two structural parameters, the cubic lattice parameter, a, and the
internal parameter, x. It consists of distorted tetrahedra with small changes in

bond lengths. As in cubic diamond, each atom in BC-8 has four neighbors but

there are two different types of bonds resulting in two slightly different bond

lengths and thus two distorted bond angles, about 99 ° and 118 °. lo1,1o7 All

potentials describe the structural parameters fairly well; however, with the

exception of T2, they overestimate the energy. T2 gives a very small relative

energy implying very weak bond-bending forces as already indicated in the

previous section. SW, DOD, T2, and T3 correctly predict the bulk modulus;

PTHT and BH overestimate it just as they do for cubic diamond (see Table V).

The ]3-tin structure is also of interest because it is the first phase the diamond

structure transforms to under pressure. This phase has four nearest-neighbors

and two second-nearest neighbors at a slightly larger distance making the

effective coordination number, Zeff, equal to 6. SW gives the best overall

description (excluding the bulk modulus). Only T3 correctly predicts the bulk

modulus. All but SW, underestimate the c/a ratio and only BH and SW describe

the energy fairly well.

The graphitic phase is important because (i) it is the only undercoordinated

structure (with respect to cubic diamond) and (ii) it gives a measure of both the

tendency of silicon for rehybridization from sp 3 to sp 2 as observed on some

surfaces and also of rt-bonding which was found by first-principles calculations

to be weak in silicon compared to carbon. _o2 Note again that in the DFT

calculations, the c/a ratio was not optimized. 89 The value of 2.726 for graphite

was used. Our results for this value are AF. = 0.34, 1.09, 1.27, 0.39, 0.70, and

0.72 eV/atom and a = 3.92, 3.99, 4.10, 3.95, 4.01, and 3.99/I, for PTHT,BH, SW,

DOD, T2, and T3, respectively. Note the excellent agreement obtained with T2

and T3. The optimized structures, as obtained with these potentials have a much

smaller axial ratio of about 1.2, remarkably about the same for all potentials. The

energy is also comparable for PTHT, BH, and DOD and for T2 and T3. Zeff is 5

for the atom having neighbors directly above and below in the adjacent layers.
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PTHT and BH predict a compressed HCP structure with an axial ratio of
0.59 and 0.69, respectively. In this structure, Zeff is 8 instead of 12 for the ideal
HCP structure; this structure is very close in energy to the cubic and hexagonal

diamond phases. SW also predicts a HCP structure with a c/a ratio of 0.884,
smaller than the ideal value of 1.633; Zeff is only 6 in this case. For the ideal
HCP structure the results are a = 2.81, 2.88, and 2.93 /_ and AE = 0.92, 0.26,

and 0.42 eV/atom for PTHT, BH, and SW, respectively. The lower energy of the

compressed structure is due mainly, particularly for PTHT, to a lower three-

body energy.

The energy of all the structures is compared to the DFT results in Fig. 7. In

this figure, the energy of the graphitic structure corresponds to the non-

optimized c/a ratio of 2.726. Also, for PTHT, BH, and SW, the energy of HCP

corresponds to the ideal c/a ratio. Only DOD shows the same trend in energy

(up to the HCP phase) as the DFT results. This is not surprising because

Dodson included more structures in the fitting database than the other potentials.

PTHT does a poor job in describing the energy of these phases. Only SW, DOD,

T2, and T3 predict the BC-8 structure as the next-lying phase after cubic and

hexagonal diamond, and only SW and DOD predict [3-tin as the fourth phase. All

potentials correctly predict that the equilibrium atomic volume of cubic diamond

is larger than that of the other phases (excluding the non-optimized graphitic

structure). They also predict the increase of bond length with increasing

coordination (the dependence is approximately logarithmic). However, the bond

lengths are, in general, somewhat larger (particularly with SW and BH)

compared to the DFT results.

5.2 Phase Transformations

As a further test and comparison, we finally discuss pressure-induced phase

transformations. We have studied all possible phase transformations (mainly

from the cubic diamond structure to all the other bulk phases) using the

procedure outlined in Ref. 89. Only T3 predicts correctly that cubic diamond will

first transform to the [3-tin phase at a transition pressure of 127 kbar. The

transition volumes (normalized to the experimental equilibrium volume of cubic

diamond) are 0.903 (cubic diamond) and 0.715 (l-fin). This agrees fairly well

with the experimental values of 88-125 kbar, 1o8 0.918, and 0.710, 89 respectively.

T3 also predicts a [3-tin to BC-8 transformation at 47 kbar compared to the DFT
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result of 76 kbar. 101The first transformation from cubic diamond is predicted to

be to the compressed HCP phase by PTHT and BH, to BC-8 by SW and T2,

and to simple hexagonal by DOD. The cubic diamond to I_-tin phase

transformation is predicted to be (in the order of increasing transition pressure)

the third transformation by PTHT (286 kbar, 0.93 (cubic diamond), 0.77 (_-tin)),

the fifth by BH (155, 0.93, 0.84), the second by SW (217, 0.86, 0.82), the fourth

by DOD (205, 0.85, 0.76), and the fifth by T2 (270, 0.84, 0.73). Biswas and

Hamann lo found that cubic diamond would make a transition under pressure

first to simple cubic. We found this transition to occur after the cubic diamond to

HCP transition using their potential.

5.3 Elastic and Vibrational Properties

The description of the elastic properties (in particular, the shear constant

C44) constitutes a stringent test for the potentials. We have calculated the

elastic constants using the homogeneous deformation method. 84 The results are

presented in Table V. The cluster functionals were all fitted to the bulk modulus,

B; it is thus well described. They also descibe well the pressure derivative of the

bulk modulus, B'. SW provides a good fit to B but significantly underestimates B'.

PTHT and BH overestimate Cll, C12, B', and B. DOD and T2 underestimate

Cll by about 28%; SW and T2 overestimate C12 by about the same amount. All

potentials underestimate C44; the worst fit is provided by T2, PTHT, and BH.

For T2, this indicates once again the very weak bond-bending forces. Note that

they also underestimate the second shear constant (Cll - C12). Also, none of

the potentials correctly describe the negative Cauchy discrepancy (C12- C44).

PTHT and DOD overestimate significantly Kleinman's internal strain parameter,

4.23 This is reflected in the large value of (C°44 - C44). C°44 is the value of C44

in the absence of internal displacement. _lo BH, SW, and T3 provide a good fit to

C°44 and 4. This shows that such a good fit does not necessarily result in an

accurate value of C44. Tersoff developed T3 in order to improve on the elastic

constants. T3 indeed describes the elastic constants better than does T2. SW

also gives a good description. This is in fact quite remarkable considering that

SW was not directly fitted to any elastic constants. For all potentials, the elastic

constants satisfy the mechanical stability conditions indicating that the cubic

diamond structure is stable against all elastic homogeneous deformations. 84

27



The vibrational properties influence small distortions from equilibrium and are
thus also important. In Table V are listed the phonon frequencies corresponding
to four modes, the transverse acoustic at X, TA(X), the transverse optic at X,
TO(X), the longitudinal optic and acoustic at X, LOA(X), and the longitudinal-

transverse optic at F. The phonon spectrum for DOD is not available. BH gives

the best overall description of these phonon frequencies, lo For PTHT, despite a

very poor description of the elastic constants, the phonon frequencies agree

fairly well with experiment with the exception of vTO(X). Note the almost

perfect agreement for VTA(X). The full phonon spectrum has been determined

by Pearson. 34 At the zone boundary, the acoustic modes are well described.

However, the optical modes are too stiff; besides a larger zone center

frequency, the modes increase with increasing wave vector, instead of

decreasing. The fact that PTHT and BH give a better agreement with

experiment for the transverse acoustic mode at X than the other shorter-range

potentials is consistent with the observation that long-range interactions are

necessary for an adequate description of this mode. 113 While SW also does a

fairly good job with these phonon frequencies, the spectrum extends to higher

frequency compared to experiment. T2 gives a poorer overall description of the

phonon spectrum than SW. VTA(X) is underestimated significantly. 27 T3 gives a

description comparable to SW. 13

5.4 The Universal Energy Relation

All properties of the cubic diamond structure presented thus far probe only a

very small region around equilibrium. It is desirable to seek information about

the behavior of the potentials in regions well away from equilibrium. Recently,

Rose, Smith, Guinea, and Ferrante 114 showed that the binding energy versus

distance relation for a condensed system, independent of its bonding character,

could be described by a universal energy relation (UER) given by,

E(a*) = Ec (1 + a* - f3 a*3) e-a*

Where a* = rl(r/re - 1) and ri = (9Bf2e/IEcl) 1/2. Here r is the first nearest-

neighbor distance and f2 is the atomic volume while the subscript e indicates

equilibrium values. The coefficient f3 was fixed to a value of 0.05 which was

determined from the thermal expansion of copper. 114 This led to a value of 4.74
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for B' in silicon compared to 4.2 for the experimental value. A value of 0.0052
for f3 leads to an exact fit whereas f3 = 0 gives B'= 4.25; f3 was set to zero in

this work. In general, good agreement was found between the universal energy
relation and experimental data as well as the first-principles calculations. The
UER not only accurately models the region of moderate uniform compression
but it also provides information about the behavior of the crystal under moderate

uniform expansion where experimental data is lacking.
The energy versus distance curves are shown in Fig. 8. Compared to the

UER curve, BH and PTHT indeed do a poor job. The repulsive branch of the
curve is well described by the short-range potentials. The cluster functionals
also do a good job for expansion up to a bond length of about 2.8/I,. Note that

the UER suggests that the potential is long-range; however, the accuracy of the
UER has not been demonstrated for large expansions. According to first-

principles calculations, 83 the range of the two-body potential is about 5_ (see

Fig. 2). Moreover, the many-body term should fall off much more rapidly with

distance than the two-body term. It thus seems reasonable to assume that the

range of the potential should be no more than about 5/_,.

To further characterize the behavior of the energy-distance curve, we

consider a theoretical property defined in Ref. 114 as a limit on the tension at

which the crystal would rupture. This negative pressure, PR, is the value at the

minimum of the pressure versus distance equation. It was found that, for most

crystals, PR is typically 10 to 20% of the bulk modulus. Compared to the UER

value of -0.16 Mbar, PR is -0.17, -0.14, -0.16, -0.34, -0.36, and -0.53 Mbar for

PTHT, BH, SW, DOD, T2, and T3, respectively. The corresponding strain, ER, is

9, 13, 20, 26, 26, and 20%, respectively while the UER value is 15%. The large

overestimate of PR and eR exhibited by the cluster functionals is due entirely to

the short range and abrupt cutoff (Figs. 2 and 8).

5.5 Bulk Point Defects

In general, point defects involve large atomic displacements and rebonding

around them. They provide information about bond-breaking energies and are

important for testing the ability of the potentials to model such large atomic

displacements. Several calculations or simulations of intrinsic defects were

previously performed using BH, SW, T2, and T3. Using SW, Batra, Abraham,

and Ciraci 50 performed an extensive molecular-dynamics simulation (at zero
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pressure and temperature and in a cell containing 800 atoms) for four types of
self-interstitials: the tetrahedral (IT), the hexagonal (IH), the bond-centered (IB),
and the dumbbell or split (Is) interstitials. Biswas and Hamann lo calculated the
energy of formation of IT, IH, and the vacancy. Tersoff, using T2, 12calculated

"upper bound" values for the energies of IT, IH, IB, and the vacancy; with T3, 13
he reported energies for the same defects and also for IS, Ix, the split vacancy
and the saddle point for the concerted exchange mechanism of Pandey. 115

Using the procedure outlined in Sec. 3, we have performed our own calculation
for IT, IH, IB, IS, the vacancy, and the split vacancy. We have calculated defect
energies at constant atomic volume (f2 = f2e) and at constant pressure (P = 0).

The volume relaxation reduces the formation energies by less than 0.1 eV. This

is because our cell is very large and extends to the 24th shell from the defect.
For a (64 + 1) atoms cell, volume relaxation is more important and reduces the

formation energies by up to 0.3 eV. The formation energies of the equilibrium

(relaxed) configurations presented in Table VI include volume relaxation, i.e.,

they are formation enthalpies at zero pressure. There is no reliable experimental

data for the equilibrium energies and structures of these defects; therefore, our

results are only compared to those obtained with first-principles methods. As

indicated in Sec. 3, there are, however, large uncertainties in these ab initio data

so that only a range of values is really available at this time. These are also

listed in Table VI.

PTHT understimates significantly the energies of all the defects, in particular

IT and the vacancy. The short-range potentials give a better description of the

energy of IT than the longer range potentials (PTHT and BH). This would

confirm the observation of Biswas and Hamann that short-range functions are

needed to model such a defect. 10 In fact the short-range potentials (T3, SW,

DOD, and T2 in that order) appear to give a better overall description of the

energies of all defects considered here.

PTHT gives a small relaxation of the nearest neighbors surrounding IT. With

all potentials, IT has four and six first and second neighbors at 2.44 and 2.8/_

(PTHT), 2.54 and 2.84/_ (BH), 2.56 and 2.94 ,/_ (SW), 2.57 and 2.69/_ (DOD),

2.52 and 2.72/_ (T2), and 2.38 and 2.96 ._ (T3). IH has six first neighbors at

2.42 ,_ (PTHT, DOD, and T2), 2.51 /_ (BH), 2.58 ./_ (SW), and 2.48/_ (T3). IB

has two first neighbors at 2.36 _ (PTHT), 2.63/_ (BH), 2.31/_ (SW and DOD),

2.27 /_ (T2) , and 2.23 ,_ (T3). The two atoms forming IS are separated by

about 2.19 /_ (SW) - 2.33 /_ (PTHT). They each have two second neighbors at
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2.28 /_ (T3) - 2.36/I, (SW). In general, all potentials confirm the findings of

Batra, Abraham, and Ciraci 50 that (i) there are significant atomic relaxations

extending to several shells around the defect and (ii) the relaxation is oscillatory

in nature and somewhat nonuniform within some shells.

BH and SW lead to an equilibrium configuration of the vacancy where the

neighboring atoms relax radially (along (111)) inward towards the defect. This

relaxation brings the surrounding atoms (initially separated by 3.84/_,) closer to

each other to about 2.89 /_ resulting in a weak interaction of their dangling

orbitals. It also increases the length of the back bonds to 2.44/I,. We note that

for SW, the ideal configuration is metastable (see Sec. 6.1.1). Biswas and

Hamann reported that the relaxation energy for the vacancy was zero. We

found that, unlike for SW, the ideal configuration is not at equilibrium because

the forces on some atoms although small are quite significant. PTHT, DOD, T3,

and T2 give an outward relaxation (also along (111)) in analogy with the (11 I)

lxl surface. In fact, the amount of relaxation correlates somewhat with the first

interlayer contraction of that surface (see Table VIII). With PTHT, DOD, and

T3, there is another metastable configuration for the vacancy where the

relaxation is inward. In this case, the vacancy formation energy and the

fractional amount of relaxation are 2.87 eV and -31.5% (PTHT), 4.21 and -32.2

(DOD), and 4.00 and -28.9 (T3).

Whether the relaxation around the vacancy is inward or outward is still a

subject of controversy. Most past quantum-mechanical calculations lead to an

outward relaxation (see Ref. 96 for a discussion of such work). More recently

Kelly, Car, and Pantelides 96 found an inward relaxation of about 0.2 ,/k

compared to 0.6/_ and 0.56/_ for BH and SW. Antonelli and Bernholc 95 also

found an inward but smaller relaxation (-2.8%). Wang, Chart, and Ho 116 using a

tight-binding molecular-dynamics method also arrived at an inward relaxation of

0.5/_ which compares very well with the results obtained with BH and SW.

The configuration corresponding to the split vacancy is the classical saddle

point for vacancy migration. In this migration path, a neighboring atom moves

along a bond and displaces the vacancy. The saddle point is expected to be the

configuration where the atom is at the mid-bond site. This atom has six first

neighbors at about 2.96/I, when these are at their ideal positions. The ab initio

results 96 for this defect are: Ef = 5.01 eV (unrelaxed) and 4.19 eV (relaxed),

and an inward relaxation of the six neighbors of 0.28/_. The calculation of the
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vacancy formation energy lead to 4.5 and 3.92 eV for the unrelaxed and relaxed
configurations, respectively. 96The resulting migration energy for the vacancy is

0.27 eV compared to the experimental value of 0.45 eV. We note that both
Tersoff potentials give the split vacancy as the most stable configuration for the
monovacancy. The inward relaxation of the neighbouring atoms is described

well by T3, SW, and BH. Assuming, as in Ref. 96, that the configuration of the
split vacancy is the saddle point for vacancy migration, the migration energy for
the vacancy as obtained with BH and SW is 0.18 and 0.54 eV, respectively. We
note the excellent agreement with experiment provided by SW.

Our results obtained with SW agree with those of Ref. 50. For T2, only the

result for the vacancy agrees with that of Ref. 12. For IT, IH, and IB, our results

for Ef are consistently smaller but, as indicated above, Tersoff stated that his

numbers were upper bounds on Ef. Also our values for the formation energy of

IT obtained with T3 is smaller by 0.35 eV than Tersoffs result. 13 The largest

discrepancies are with the relaxed formation energies of IT and IH obtained with

BH. Biswas and Hamann 10 reported values of 3.61 and 5.09 eV, respectively,

compared to our results of 1.56 and 2.89 eV. On the other hand the unrelaxed

formation energies are in much better agreement: 4.99 and 9.47 eV compared to

our numbers 4.57 and 9.31 eV. Our result for the unrelaxed vacancy formation

energy is exactly the same as theirs. Biswas and Hamann did not specify clearly

the cutoff radius and size of the cell they used for the defect calculations. To try

to resolve this question, we performed calculations for these two defects with a

small cell containing 65 atoms and used different values for the cutoff radius, Rc.

With Rc = 5.0 ]k, there is very little change in the results of Table VI. With Rc =

3.95 ]_, the formation energies are 0.83 eV (4.86 eV, unrelaxed) for IT and 2.57

(9.73) for IH. Finally, with Rc = 3.0/_,, we found 4.35 (9.74) and 5.56 (14.46),

respectively.We do not know at this time what is the reason behind these

differences. We do believe that our results are correct.

5.6 The liquid and amorphous states.

We have not performed any simulation of liquid (l-Si) or amorphous (a-Si)

silicon; however, numerous studies have been performed by others to study

these two bulk phases. For a-Si, the resulting structures seem to be very much

dependent on the simulation procedures. 52-54 Also, the potentials were

sometimes altered in order to achieve a better description of the amorphous
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state. 43For these reasons, we will not attempt to review the simulation work
done with BH, SW, T2, and T3. Instead, the interested reader is directed to the

original literature given for each potential in Sec. 2.
Takai, Halicioglu, and Tiller performed a constant pressure Monte Carlo

simulation to study the melting of silicon using the PTHT potential. 33 The

melting temperature, Tm, was determined to be about 1920 K in fair agreement
with the experimental value of 1685 K. The potential correctly describes the
volume contraction upon melting; however, other properties of l-Si such as the

latent heat of fusion are 2 to 3 times smaller than the experimental values. The

structural properties were not reported.

Because a requirement in the fitting procedure was to accurately reproduce

the melting point of the crystal and the structure factor of the liquid, 6 SW gives

the best overall description of /-Si than any other potential. Several groups

studied l-Si and a-Si using this potential and different simulation methods. 6,51-

53,55,62,67-68 Stillinger and Weber determined Tm to be about 2013 K. 6 However,

all other studies lead to a value in the range 1665 - 1750 K. The structure of/-Si

is also rather well described and other properties are in good or fair agreement

with experiment.

BH and T3 strongly overestimate Trn which is about 2900 K 43,44 and 3000 K

13, respectively. The radial distribution function of the liquid is described fairly

well by T3. T2 does not describe l-Si well. 12 Both Tersoff potentials seem to

favor four-fold coordination in the liquid in disagreement with experiment.

Note that the simulations of /-Si reported here for PTHT and SW were

performed with the original sets of energy parameters. These parameters, as

indicated in Sec. 2, give a bulk cohesive energy, Ec, of diamond silicon of -5.45

eV for PTHT and -4.34 eV for SW. Simulations on melting have predicted strong

correlation between Tm and Ec. 117 Thus we may scale Tm with Ec and the

results for PTHT and SW become 1631 K and 1776 - 1867 K, respectively.

6 SURFACES

In view of the rich variety of surface reconstructions they exhibit, surfaces of

silicon represent, perhaps, the most stringent test for the potentials. We consider

in this section the low-index (100), (111), and (110) surfaces. Because of their

technological importance in the microelectronics industry, the (100) and (111)

surfaces of silicon have been extensively studied both experimentally and
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theoretically over the last 30 years. A myriad of experimental techniques were

used to determine their geometrical and electronic structure. Several models

have been proposed and many theoretical studies, most notably self-consistent

total-energy pseudopotential calculations, have been performed to explain the

different surface patterns observed. For a complete review of these surfaces the

reader is referred to the articles of Haneman. 118 It is worthwhile to note that

experimental observations of these surfaces are made at T ¢ 0. Temperature

effects associated with the entropy can therefore be important and might be the

critical factor responsible for the relative stability of some surfaces, e.g., Si(100)

and Si(111) 7x7. However, because calculations or even estimates of the

entropy are difficult, we use, as is common, zero temperature surface energies

to study the stability of such surfaces.

6.1 Si(100)

Despite its apparent simplicity, the Si(100) surface has long been the subject

of controversy. Many models have been proposed over the years to explain the

various surface patterns observed experimentally. 119,120,12_ It is now universally

accepted that the dimer model is the correct one. The dimerization of the

Si(100) surface has been particularly confirmed by STM observations in real

space _20,_22 and also by numerous total-energy calculations, principally those

using first-principles pseudopotential techniques. 86,90,123-126 The reduction of the

dangling bond density is the primary driving force for the dimer reconstruction.

Dimerization occurs when two surface atoms (initially in their ideal bulk

positions and separated by the second neighbor distance of 3.84/I,), which have

two dangling bonds per atom, move toward each other in the [110] direction and

in the plane containing their dangling bonds to form a bond. This is illustrated in

Fig. 9 which shows symmetric dimers. The dimerization induces subsurface

atomic displacements which extend at least four layers into the bulk. The dimer

is buckled and asymmetric when the dimer atoms have different x and z

displacements from their ideal bulk positions. The x and y directions, taken as

[110] and [] 10], run along the dimer bond and the rows of dimers, respectively.

Both 2xl and c 4x2 patterns have been observed in LEED and He-atom

diffraction experiments; the latter also showed the presence of p 2x2 and

possibly c 2x2 patterns. 119 The situation was clarified recently by Tromp,
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Hamers, and Demuth who used an STM with a lateral resolution of about 3/_ to

determine the atomic structure of the clean Si(100) surface. 123They only

observed asymmetric buckled and symmetric nonbuckled dimers along with a
relatively high density (approximately 10%) of dimer vacancies. The surface

defects, which are randomly distributed, appear as both individual dimer
vacancies and small clusters of missing dimers. No other type of reconstruction
was observed. The density of buckled and symmetric dimers is nearly the same
indicating that their energies are approximately equal. This is supported by ab
initio calculations as we will see below. 90.124,125In defect-free regions, the

dimers are symmetric and the periodicity is 2xl. The buckled dimers, which give
rise locally to p 2x2 and c 4x2 patterns, are often observed near vacancies and
at steps. This suggests that the surface defects induce or at least stabilize
buckling. 120 The p 2x2 and c 4x2 structures are formed by alternating the

buckling along a row of dimers for both of them but, in adjacent rows, the

buckling is parallel and antiparallel for the former and latter, respectively. The c

2x2 structure was not observed.

In this work, the Si(100) surface is modeled with a slab containing 20 layers

of 16 atoms each. The top 14 layers are allowed to relax while the rest are held

fixed. The cartesian coordinate system is shown in Figs. 9 and 10. For the dimer

reconstruction, the surface atoms are initially displaced toward each other to

form dimers. The results for the ideal and relaxed lxl, the dimer reconstructed

2xl and c 2x2 surfaces, and the Pandey r_-bonded defect structure are

presented and compared to the DFF results in Table VII.

6.1.1 Si(100) lxl

The energy of the ideal lxl surface, as obtained with the six potentials, is

comparable to the DFT result of 2.5 eV. This value obtained at 4.3 Ry is

probably an upper bound. The largest discrepancy is obtained with PTHT and

DOD which give about the same value. By relaxing the lxl surface, the energy

is slightly lowered in agreement with the DFI" result. This relaxation, of both

energy and first interlayer contraction, is perfectly described by BH and to a

lesser extent by T3. Again, PTHT and DOD produce similar results; they both

overestimate the relaxation energy by about a factor of 3. DOD gives an

interlayer contraction of 10%, twice the DFT result. T2 gives very little

relaxation. In the case of SW, all stresses are zero and the surface exhibits no
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relaxation; this is true, as we will see later, for any bulk terminated surface or

any defect that is created by removing atoms, e.g., vacancies. This behavior can
be directly related to the form of the potential 37,58and is explained by the

combined effect of three features: (i) the potential includes only first-neighbor

interactions, (ii) the total 3-body energy vanishes at the tetrahedral angle, and
(iii) the Si2 molecule bond length and strength are exactly equal to the bulk

equilibrium bond length and energy. As a result of (i) and (ii), the forces and all
stresses on all atoms are zero; consequently, the ideal lxl structure of any
surface is a minimum on the potential energy surface. There is no relaxation (for
unreconstructed surfaces) because of (iii). Compared to the DFT results, the
potentials do not, in general, predict the surface stress well. For the ideal lxl

surface, they all underestimate Oxx; the short ranged potentials even predict a

zero stress for that direction. PTHT and BH overestimate t_yy strongly; T3

predicts a negative value.

6.1.2 Dimer Reconstruction

Since we will compare our results with those obtained via ab initio methods,

it is worthwhile to review those theoretical calculations. As stated above,

numerous total energy calculations were performed over the years in an attempt

to explain the experimental observations. 86,90,118,123-126 We only focus on three

of them which all used the pseudopotential technique.

Pandey 124 found that the lowest energy configuration in a 2xl cell leads to

symmetric dimers. The surface energy (relative to the ideal lxl surface),

computed with Epw = 6 Ry, is -2.06 eV/dimer. Pandey also showed that, using

this minimum energy structure and buckling the dimer such that no bond length

is altered, the energy was raised by 0.02 and 0.1 1 eV/dimer for a tilt angle (with

respect to the surface) of 10 ° and 15 °, respectively. Batra 90 also obtained

symmetric dimers for his optimized 2xl surface with a relative energy of -2.34, -

2.06, and -1.86 eV/dimer at 5.5, 6.5, and 7.5 Ry, respectively. Note that this

indicates that the surface energy has not yet fully converged. An optimized

buckled geometry with 2x 1 symmetry and a tilt angle of 8 ° raised the energy by

only 0.02 eV/dimer at 7.5 Ry. However, buckled dimers in 2x2 symmetry

lowered the energy by 0.0054 eV/dimer (this structure was not optimized and

the buckling was very small). Batra also showed that there is no barrier to

dimerization and that twisting of the dimers is energetically unfavorable. Roberts
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and Needs 125performed what is perhaps the most extensive calculation of

dimer reconstruction on the Si(100) surface. They considered different
geometries including the 2xl surface with symmetric and buckled dimers, the p
2x2 structure with alternating buckled dimers, and other structures with missing
dimer defects. They found that buckled dimers have lower energy than

symmetric dimers. The relative energies, obtained at 6 Ry, for the buckled p 2x2
and 2xl structures and the symmetric 2xl structure are -2.108, -2.078 and -2.02
eV/dimer, respectively. The energy difference is indeed small and is comparable

to the accuracy of their calculation. In fact, the energy difference between the
buckled and symmetric dimer in the 2xl structure is only 0.03 eV/dimer at 10
Ry. The buckled dimer in the 2xl structure is tilted by about 6.9° while the two

alternating buckled dimers in the 2x2 cell have different tilt angles, 11.6° and
12.3°. For the optimized 2xl structure, the structural parameters are nearly the
same for the three calculations. They are given in Table VII and Fig. 9. The
main results from these calculations are (i) the symmetric and buckled dimers

have nearly the same energy which is compatible with the observation that they
have nearly the same density, (ii) the dimers are not twisted, (iii) the dimer bond

length is shorter than the bulk bond length indicating multiple bonding character,
and (iv) the back bonds are strengthened.

For all potentials, the Si(100) surface reconstructs to form symmetric dimers.
Twisting the dimers raised the energy in agreement with the DFT result. No

potential is able to model buckling which is a quantum-mechanical phenomenon.

123,128 This will probably require inclusion of atomic interactions higher than

three-body in the potential and even possibly fitting the potential parameters to a

buckled structure. Both the 2xl and c 2x2 structures are found to be stable with

a small energy difference between them. Only PTHT and DOD incorrectly

predict that the c 2x2 surface is more stable. For PTHT, the energy gain of the c

2x2 structure over the 2xl structure is due to a lower two-body energy, the

three-body energy being about the same, while for DOD, it is due to a lower

three-body energy (positive) despite the increase of the negative two-body

energy. The structural parameters (bond lengths and angles) are nearly the

same for both structures, which is consistent with their small energy difference.

We now focus on the 2xl reconstruction. Note that, as indicated above, the

DFT value of -0.93 eV for the relative energy of this surface is certainly a lower

bound. Thus, all potentials, but T2, lead to a surface energy in fair agreement

with the DFT result. Only PTHT, DOD, and T2 give a dimer bond length smaller
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than the bulk equilibrium bond length (2.352/_). The value for T3 is very close;

the largest discrepancy is obtained with BH and SW. For the back bonds
between surface and second-layer atoms, the DFT calculations show a
strengthening with a length slightly larger than the dimer bond length. Only
PTHT, DOD, T2, and T3 give this back bond strengthening. Also, only for T2 is
the length of these back bonds larger than that of the dimers. Note, however,

that all bond lengths are within 2% of the bulk bond length and that the largest

discrepancy between the DFT results and those obtained with the potentials is

7, 3, and 5% for the dimer bond length, the length of the back bonds, and the

bond angles, respectively.

According to the DFT calculation, the ideal lxl surface is under a strong

tensile stress along the eventual dimerization direction and under a weaker

tensile stress in the perpendicular direction. The reduction of axx after

dimerization suggests that stress relief is the driving force for the dimer

reconstruction. However, if this were the case, (Yyy would also be small; but it is

now stongly compressive. Therefore, just as for the Si(111) 7x7 structure, 85 it is

primarily the reduction of the dangling bond density that stabilizes the dimer

reconstruction on the Si(100) surface. Only SW and T3 predict the correct sign

for the two stresses. SW overestimate Crxx by 68% and gives a vanishingly small

(Yyy while T2 underestimate both of them by 47 and 36%, respectively. BH and

T2 predict the value of Oxx very well but both give a positive ayy (almost zero for

BH). On the other hand, PTHT and DOD predict ayy very well; they, however,

predict a compressive stress in the x-direction. It is worthwhile to indicate that,

for all potentials (even those for which the sign of one of the stresses is wrong),

the 2xl surface is more compressed (less tensile) in the y-direction than it is in

the x-direction.

6.1.3 Surface Defects

We now turn our attention to the surface defects. It does appear that the high

defect density is intrinsic of the (100) surface. Indirect support for this is

provided by the observation that similar sample preparation procedures for (111)

surfaces lead to a low surface defect density a:o and by the low formation

energy of dimer vacancies, a25 On the other hand, the geometrical arrangement

of the defects depends on the sample preparation technique and/or the presence

of impurities on the surface. In the STM experiments, 120,123 the samples were
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gradually cooled down after annealing at high temperatures, this led to a random
distribution of missing dimers. In another STM experiment, 129missing dimer

defects ordered along the dimerization direction are clearly seen when small
amounts of gallium are deposited on the Si(100) surface. Indirect evidence for

ordered dimer vacancies is also provided by the LEED studies of higher-order
periodicities which can be produced by rapid quenching from high temperatures.
These are c 4x4 and c 8x8 130and, in particular, 2xn with 6 < n < 10. 131These
structures have all been explained with models involving ordered dimer
vacancies. For the 2xn structures, it has been determined that they are

metastable and that quenching at higher rates or from higher temperatures lead
to small n. 131It is clear from the above that dimer vacancies play an important
role in the energetics and structures of the Si(100) surface. For the potentials to
be useful, it is essential that they give at least a reasonable description of such
defects. Roberts and Needs 125calculated the surface energy of the Pandey re-
bonded defect structure. 124In this model, shown in Fig. 10, a dimer vacancy is

created at every fourth site along the rows of dimers. This leads to a structure
with 2x4 symmetry. In the DFT calculation, the structure was optimized but the
dimers were not allowed to buckle. Its energy is only 0.035 eV/lxl cell higher

than that of the 2xl symmetric dimer reconstruction. This corresponds to a
formation energy (with respect to the 2xl symmetric dimer structure) of 0.28
eV/defect. In a 2x2 cell, where the dimer vacancy concentration is 0.5, the
formation energy is 1.10 eV/defect. Clearly these surface defects repel each

other. Now, while the creation of a dimer vacancy induces strain in the surface,
it does reduce the dangling bond density by rebonding of the exposed second-
layer atoms. Thus, the optimum surface defect concentration is probably lower
than 0.25 and is a compromise between the two effects.

The results of our own calculation for this defect structure are presented in
Table VII. DOD considerably overestimates the strain energy and leads to a
surface energy only slightly lower than the ideal lxl surface. At the other end,
T2 predicts that vacancy formation is exothermic (with respect to the 2xl
structure) in agreement with Pandey's predictions (Pandey 124,who did not

perform a calculation, estimated that the defect would lead to a large energy
gain of 2.0 eV/defect which seems quite unreasonable). BH , SW, and T3 do

predict that the defect structure is metastable and give results in fair agreement
with those of the DFF calculations. While, as stated above, the potentials do not,
in general, give a good description of the surface stress, it is worthwhile noting
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that, qualitatively, the surface defects induce atomic displacements such that the

tensile stress along the dimer bonds is reduced and that the surface is now

under tension (or at least under less compression) in the y-direction. The atomic

displacements are qualitatively similar to those of the DFT optimized structure.

Only DOD predicts a shortening of the bond length of the dimers adjacent to the

defect; the others predict a small expansion (_< 1%). The length of the weak

bond formed by the exposed second-layer atoms is 2.562, 2.625, 2.318, 2.871,

and 2.656 _ for BH, SW, DOD, T2, and T3, respectively compared to the DFT

result of 2.71/_.

In conclusion, BH, SW, T3, and to a lesser extent T2 give a reasonable

description of the energetics and structures of the Si(100) surface whose

principal features are the dimerization of the surface atoms and the existence of

dimer vacancies. This is mainly due to the fact that the angular distortions (from

the tetrahedral angle) on this surface are relatively small (about + 12% for the

2xl surface; they are somewhat larger for the defect structures), at least

compared to those encountered in small clusters and on the (111) surface. Their

principal limitation is the inability to model buckling which might not be serious

because the energies of the buckled and symmetric dimers are nearly

degenerate. Clearly surface defects play an important role here and any realistic

calculation or simulation which aims to study them will have to involve systems

with a large number of atoms. Powerful and accurate first-principles methods,

such as the now widely-used ab initio molecular dynamics technique, 132 are still

limited to studies of relatively small systems (up to 150 atoms 133). It is believed

that the potentials mentioned above will be useful in large-scale simulations of

the Si(100) surface since they predict its properties reasonably well and they

can handle large systems with atoms in the tens of thousands. 6o

6.2 Si(111)

The Si(111) surface exhibits several reconstructions depending on the purity

of the surface, the temperature, and the sample preparation procedures. We

consider here only clean surfaces. A freshly cleaved (111) surface in UHV

reconstructs to form a 2xl metastable structure which transforms irreversibly

upon heating (the transition temperature ranges from 200 to 350 oc depending

on the step density 134) to the stable 7x7 phase which, in turn, transforms
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reversibly to a structure with lxl symmetry at about 830 oC. This lxl phase,
which still remains a mystery, 118is not the bulk terminated surface.

The widely accepted model for the 2xl surface is the Pandey re-bonded
chain model. 85,91,132,135-138This structure is similar to the (110) surface. Another

interesting model, called the three-bond-scission model, has been recently
proposed by Haneman. 118,139 For the 7x7 surface the DAS model of

Takayanagi, Tanishiro, Takahashi, and Takahashi is now universally accepted.

140-1,14 Other metastable structures have also been observed. STM experiments

on (111) surfaces prepared by a combination of laser and heat treatment

showed locally the existence of 2x2, c 4x2, _/3x'_3, 5x5, and 9x9 structures. 14s

The first three have been explained by simple adatom covering of the surface

with the adatom located in the T4 site. The (2n+l)x(2n+l) structures were

explained with DAS type models. 1_-146 A _/3x_/3 structure has also been

observed in a LEED experiment; 147 the LEED data were fitted to a vacancy

model which was shown to be energetically unfavorable. 37,148

We have performed calculations for most of the structures mentioned above.

In general, the Si(111) surface was modeled with a slab containing eight double

layers. The top four or five double layers were allowed to relax while the rest

were held fixed. The orthogonal x and y surface axes run along the [170] and

[112.] directions, respectively. Depending on the symmetry of the surface, the

number of atoms per layer ranged from 24 to 162 corresponding to a total

number of moving atoms of 240 to 1640, respectively. The surface energies and

stresses for the (111) surfaces are presented in Table VIII.

6.2.1 Si(111) lxl

Compared to the DFT result, the surface energy of the ideal lxl surface is

underestimated by all potentials. Although bond breaking energies are certainly

important, only the relative energies are relevant when investigating the stability

of one surface structure over another. We note that the relaxation of the lxl

surface is best described by PTHT, DOD and T3; however, they all significantly

overestimate the compressive lateral surface stress. With BH and T2, the lxl

surface exhibits little relaxation resulting in a small tensile stress. As indicated

above, in the case of SW, all stresses are zero and the surface exhibits no

relaxation. As expected, all short-ranged potentials predict a zero surface fault
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energy for the lxl faulted surface. PTHT and BH give a value of 0.012 and
0.015 eV/lxl cell compared to the DFT result of 0.02 to 0.06 eV. 91 They,
however, predict a surface stress of-2.31 and -0.04 eV/lxl cell while the DFT
value is 0.11 eV/lxl cell.

6.2.2 Si(111) 2xl

Using a cleavage technique, Gilman 150measured the surface energy of the
(I 11) surface at 77 K. He obtained a value of about 1 eV/lxl cell. Since, as
indicated above, a freshly cleaved surface transforms to a 2xl reconstruction,

except for any generated strain energy associated with the cleavage process,
this value can thus be taken as the experimental surface energy of the (111) 2xl
n-bonded surface. The DP"F result of 1.11 eV compares very well with this

value.

Only PTHT predicts that the 2xl n-bonded structure is stable with respect to

the ideal lxl surface, the relative energy is however underestimated by a factor

of 3. Moreover, the DFT calculations predict that the structure is also buckled.

132,135,137,138 Again the potentials cannot model buckling. For BH, this structure

is not even a minimum. The 2xl surface reduces its energy by n-bonding of the

surface dangling bonds which are now first neighbors instead of second

neighbors as they are on the l xl surface. Since the potentials do not model n-

bonding, for them the dangling bond density is unchanged. Therefore, there is no

energy gain to overcome the strain energy caused mainly by angular distortions

(+10%). Only for PTHT is this strain energy compensated by a strengthening of

the bonds in the surface chains. DOD shows a somewhat similar behavior, but

the strain energy is higher due to a stronger three-body energy (Fig. 4). Our

result for DOD is in disagreement with that of Dodson who reported that the 2xl

reconstruction reduces the energy of the (111) surface by 0.12 eV/lxl cell. 9 In

general, the potentials predict that the 2xl surface is under a weak and stronger

tensile stress in the directions parallel and perpendicular to the chains ,

respectively; the DFT calculation predicts the opposite. 85 However, the

comparison here is not truely appropriate because the DFT structure is buckled

and stresses are more sensitive to the atomic displacements than is the energy.

6.2.3 Adatom Structures
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According to the DFT calculations, 91 all adatom covered structures are
stable (with respect to the ideal lx 1 surface) in the order 2x2 T4 < _/3x_/3T4 <
2x2 H3 < _/3x_/3H3. Thus, the 2x2 structure is more stable than the _3x_3

structure in spite of the fact that it has a smaller reduction of the dangling bond
density. The energy difference is, however, only 0.06 eV/lxl cell. Meade and

Vanderbilt have attributed the energy lowering to the different electronic

structure of the two surfaces. 91 Note that, with the same adatom concentration

of the 2x2 structure, two different structures with rectangular c 2x4 and c 2x8

symmetries can be generated. _ We have not considered these structures in

this work. Before we discuss the results for the adatom structures, note that

there are four errors in Table I of Ref. 37. For T3, the relative energy of the

relaxed lxl surface should be -0.07 and the energy and stress of the {3x_/3 H3

surface must be 0.482 and -0.522, respectively. The surface stress of this latter

structure should read -0.502 for BH. Also, our calculation with SW for the

{3x_/3 structures do not agree with that of Ref. 27. Li, Chen, Allen, and

Broughton reported 1.53 and 1.82 eV/lxl cell for the surface energy of the

{3x_/3 H3 and T4 structures; 27 our numbers are 1.12 and 1.61.

Only T2 predicts that all adatom structures are stable as they should be;

however, the relative energies are strongly underestimated. With BH, DOD, and

T3 all adatom structures are unstable. PTHT predicts that only the H3

structures are stable. For SW, only the "_3x_3 H3 surface is stable. With the

exception of DOD, all potentials incorrectly favor close packing of adatoms.

According to the DFF calculations, 91,93 in both the T4 and H3 structures the

three upper atoms surrounding the adatoms relax laterally inward. In the T4

structures, the adatom is bonded to the three upper atoms and to the second-

layer atom directly below; the bond lengths are about the same for both types of

neighbors. It is 2.47 and 2.49 A in the 2x2 91 and _/3x_/3 93 structures,

respectively; the bond angles are about 92 ° and 56 °. In the H3 structures, only

the three upper atoms are first neighbors of the adatom; for the ",/3x'_3 structure

the bond length is 2.55/_ and the bond angle is 93 °. 93 The inward relaxation of

the surface atoms in the T4 structures is predicted by all potentials while in the

H3 structures, only BH, SW, T2, and T3 predict such relaxation. BH and, in

particular, SW overestimate significantly the separation between the adatoms

and their neighbors in the T4 structures. For T2, the atomic displacements in the

structures are in reasonable agreement with those obtained in the DFT

calculations. In general, for all potentials, the structural parameters of the T4
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structures are qualitatively in better agreement with the DFT results than those
of the H3 structures. Consequently, because the surface stress is strongly
influenced by the atomic displacements it is qualitatively better described in the
T4 structures. These adatom structures are under a strong tensile stress which

is consistent with the inward relaxation of the three surface atoms surrounding
the adatom. The greater this relaxation, the larger the positive surface stress.

For all potentials with the exception of T2, the energy gain resulting from the
reduction of the dangling bond density is not enough to overcome the strain
energy caused primarily by the very small bond angles (Fig. 4). For T2, because
the angular function is more flexible and the bond bending forces are small (see
Sec. 2), it is able to give a better description of the energetics of these surfaces

than the other potentials. Even for those cases where the relative energy of the
various adatom structures is positive, the adsorption energy is negative as it
should be.

6.2.4 Si(111) ",/3x43 - Vacancy Model

For the vacancy model of the _/3x_3 surface, all potentials correctly predict

that this structure is not stable. The vacancy formation energy (with respect to

the ideal lxl surface) is however significantly overestimated by all potentials
with the exception of SW which predicts a value of 0.24 eV/vacancy compared
to the DFT value of 0.42 eV/vacancy. The DFT calculation predicts a moderate
inward relaxation (toward the vacancy) of the second-layer atoms and a large
compression of the first interlayer spacing. No value for the surface stress is
available. With BH and SW, the structure is under a strong tensile stress

reflecting the large inward relaxation of the second layer atoms which results in
a large bond stretching. On the other hand, PTHT, DOD, and T3 give a
compressive stress which also reflects the outward relaxation in this case.
Finally, consistent with the lack of relaxation, T2 gives a very small stress. For a
complete discussion of the vacancy structure the reader is directed to Refs. 37
and 148.

6.2.5 Si(111) (2n+l)x(2n+l)

The DAS model for the Si(111) (2n+l)x(2n+l) surface is well known and the
reader is directed to Refs. 141, 144, and 145 for a complete description of the

44



structure. This surface contains several structural units which are the dimers

along the domain walls, T4 adatoms with a local 2x2 symmetry, stacking faults,

and corner holes (an extended surface vacancy). The surface energy is the

result of a balance between the individual contributions of these units and

possibly the interactions between them. This surface is obviously the most

stringent test for the potentials.

Our results, presented in Table VIII, show that only T2 predicts that the 7x7

DAS structure is stable with respect to the ideal lxl surface. Furthermore, it is

the ground state of the (111) surface at least compared with the structures

considered so far. However, as before, the energy is underestimated.

Considering the fact that it is also only T2 which predicts that the 2x2 T4

structure is stable, we conclude that the adatoms play a major role in

determining the energy of the 7x7 surface. To confirm this, we have also

calculated the energy of the same surface but without the adatoms, the so-

called DS model. 85 The relative energy of this structure is indeed very small; it

is negative in the case of PTHT, DOD, and T2. The energy difference between

the DAS and DS structures should give the contribution of the adatoms to the

total energy of the DAS structure if their interaction with the other structural

units is negligible. This energy difference is 1.47, 1.25, 1.92, 1.69, -0.48, and 2.39

eV/adatom for PTHT, BH, SW, DOD, T2, and T3, respectively. Except for

PTHT, this energy compares fairly well with the contribution of the adatoms to

the 2x2 T4 structure (0.93, 1.38, 2.05, 1.82, -0.31, 2.54 eV/adatom) indicating

perhaps that the adatoms do not interact (or very little) with the other features

on the surface. Note that the energies of the faulted and unfaulted 2x2 T4

structures are nearly identical. 85,91 In the representation provided by these

potentials, the adatoms play an important role in determining the energy of the

7x7 surface. All potentials predict that the 7x7 DAS surface is under tension in

agreement with the estimate of Vanderbilt. 85 Considering the small value of the

stress of the corresponding DS structure, most of the tension is caused by the

adatoms. Our results obtained with SW and T2 for the 7x7 DAS surface agree

with those of Ref. 27 where the structural parameters of the optimized

structures were also reported. The investigation of the vibrational spectrum of

this surface showed that, despite their limitations, these two potentials are able

to accurately describe the z-polarized adatom vibrations. 27

It has been shown that the different (2n+l)x(2n+l) structures are very close

in energy. 16,85,140 For example, Qian and Chadi, using a tight-binding method,
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found that the 7x7 DAS structure is only 0.008 eV/lxl cell lower in energy than
the 5x5 DAS structure. 14oIt is natural to question whether T2 is able to predict
such a trend and also whether the 7x7 reconstruction is indeed the lowest-

energy structure. Thus, we have performed calculations for (2n+l)x(2n+l) DAS
and DS structures with n = I - 4. The relative energy and surface stress for

these structures are plotted as a function of n in Fig. 11. T2 does predict the low
energy difference between the different structures, about 0.1 eV/ l xl cell;
however, contrary to what was previuosly thought, 27 the 3x3 DAS structure is

the ground state of the Si(lll) surface in contradiction with the experimental

observation. The energies of the DS and DAS structures appear to increase
linearly with n for n > 2. The surface stress, on the other hand, decreases with

increasing n.

We can estimate the energies of the different surface structural units in the

DS structures by using Vanderbilt's model based on non-interacting surface

units. 16,144,1,_6 In this model, the surface energy per lxl cell of the

(2n+l)x(2n+l) DS structures, ATD S, relative to that of the relaxed lxl surface,

p, is given by, 16

AyDS = n(2n + 1)Af + 2nAw + Ac
(2n + 1)2

(8)

where Af ,relaxed 3
= l'lxl-faulted -p is the l xl surface faulting energy; Aw =-_d-p is the

relative domain wall creation energy (d is the dimer energy); Ac = c-p is the

relative corner hole energy. Using p = 0.702 eV/lx 1 cell, a least square fit yields

Aw = -0.45 eV (d = 0.17 eV), Ac = 0.37 eV (c = 1.07 eV), and Af = 0.0009 eV.

The fact that the model gives a vanishingly small value for Af (recall that T2

predicts that Af = 0) proves that the assumption of non-interacting structural

units is essentially valid. In Ref. 146, the parameters used in (8) (obtained from a

combination of DFT and Keating potential calculations) are Aw = -0.66 eV (d =

0.53 eV), Ac = 1.26 eV (c = 2.71 eV), and Af = 0.06 eV. T2 appears to give too

small a value for the relative corner hole energy.

Similar calculations using the other five potentials show that the surface

energies and stresses of the (2n+l)x(2n+l) DS and DAS structures decrease

with increasing n. For n = 4, the surface energies are already almost equal to
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those of the relaxed lxl and the 2x2 T4 structures, respectively. The energies of

the DS structures were also fitted to (8) using p and Af as given in (6.2.1) and

Table VIII. When Af was left as a free parameter, the resulting faulting energy

was in poor agreement with the actual value. The results obtained with PTHT,

BH, SW, DOD, and T3 are: Aw = -0.32, 0.68, 0.34, 0.62, and 0.68 eV and Ac =

3.15, 0.82, 0.97, 1.63, and 1.27 eV. Like T2, PTHT gives a negative relative

domain wall creation energy. The other four potentials give a relative comer

hole energy that is in fair agreement with the result of Ref. 146. These potentials

favor large n because Ac is too high (PTHT) or Aw is positive (BH, SW, DOD,

and T3).

6.3 Si(ll0)

Like the (100) and (111) surfaces, the Si(ll0) surface exhibits various

reconstructions; 151 however, in contrast to the former, very little interest has

been paid to this surface. Only the ideal and relaxed lxl surfaces are

considered here. No attempt was made to look for reconstructed structures.

The bulk terminated surface is formed by chains of atoms running parallel to

[110] (chosen as the x direction; the y direction is taken as [001]). Like the (111)

surface, this surface has one dangling bond per surface atom pointing in the

(111) direction. Adjacent atoms along a surface chain have dangling bond

alternating in directions (pointing in the [111] and [111] directions) and making an

angle of + 35.3 ° with the surface normal (they are all normal to the surface on

the (111) surface). This surface is modeled with a slab containing 15 layers of

24 atoms each. The bottom four layers were held fixed. The surface energy and

stresses are presented in Table IX.

Note that, because they have the same number of dangling bonds per

surface atom, the ideal (111) and (110) lxl surfaces have also the same surface

energy when it is expressed in eV/lxl cell. For the long-range potentials, PTHT

and BH, 7 is slightly different because atoms in the top layers have slightly

different number of neighbors on the two surfaces. The same is true for the

surface stress along [110]. Recall that the surface stress of the (111) lxl surface

is isotropic. As for the (100) and (111) surfaces, PTHT, DOD, and T3 give a

larger relaxation energy (which correlates more or less with the first interlayer

contraction) than BH and T2. As discussed earlier, there is no relaxation with
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SW. Unlike the (100) and (111) surfaces where relaxation involved only normal

displacements of atoms (mainly of the top two layers), the surface atoms of the
(110) surface (and to lesser extent those of the second layer), relax radially

inward along the (111) direction. That is, in addition to the inward displacement

normal to the surface, there is a smaller displacement in the plane of the surface
and perpendicular to the chains. This lateral displacement results in a shortening

and an increase of the bond lengths and angles in the chains, respectively (2.29
and 114° for PTHT and T3, 2.31 _ and 112° for BH and T2, and 2.26 _kand

116° for DOD). The trend in surface energy for the lxl surfaces is _/(111) <

7(110) < 7(100) with all potentials. The same trend is obtained for the relaxation

energy, A7, with PTHT, DOD, and T3. With BH and T2 it is A7(100) < A7(110) <

Ay(lll) and Ay(ll0)<A7(111)< A7(100), respectively. Note that for this

comparison these energies were first converted to the true units of surface

energy, e.g., eV/_ 2.

7 OTHER POTENTIALS

Recently, several new potentials have been proposed. These models, either

inspired by earlier attempts or using new schemes, were intended to overcome

the limitations of their precursors, i.e., the potentials considered in this work. It is

thus worthwhile to review some of them. We should also mention a new class of

total-energy functionals for semiconductors which are based on an approximate

quantum-mechanical analysis. 3z_52

7.1 Kaxiras and Pandey

Kaxiras and Pandey 2_ constructed a potential, very similar in form to BH, in

order to specifically simulate processes in the bulk diamond lattice. The potential

was fitted to the entire energy surface of atomic exchange obtained from an

accurate DFT calculation. 115 It correctly predicts the static properties of the

perfect diamond lattice and reproduces the energy of the concerted exchange

path to better than 0.1 eV. However, the energies of bulk point defects in their

unrelaxed configuration appear to be too low. For the high-coordination crystal

phases, the results are qualitatively similar to those obtained with BH. The

potential was not tested for surfaces and clusters but it is expected that its

predictions would also be similar to those of BH. Because the potential describes
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a large range of local distortions from the perfect tetrahedral configuration very
well, it should be useful in simulations of systems such as amorphous structures
where the coordination remains predominantly four-fold.

7.2 Mistriotis, Flytzanis, and Farantos

Mistriotis, Flytzanis, and Farantos 19modified the SW potential in order to

correctly describe clusters with more than six atoms. The angular dependence
of the three-body term was modified and they added a four-body term. The
modified potential has not been extensively characterized. It has not been tested
for surfaces. It predicts Trn to be about 2050 K and the high-density crystal

phases are not well described.

7.3 Khor and Das Sarma

Following Abell 153 and then Tersoff, 8,12 Khor and Das Sarma 14 developed a

universal interatomic potential for tetrahedrally bonded semiconductors. The

original potential for silicon gives an excellent description of the static properties

of cubic diamond as well as the other high-density crystal phases. The potential

had to be somewhat extended to correctly treat surfaces. 15 The bond-bending

term was modified to deal with the larger angular distortions from the

tetrahedral angle encountered on the various (111) surfaces. Also, because the

bonds of a given atom can be of a different nature, they had to fix, in an ad-hoc

manner, the value of the effective coordination number and assumed that the

character of the bonds remains unchanged in the course of the simulation. The

modified potential gave a good description of the various (11 1) surfaces

including the adatom structures and the Pandey n-bonded chain model for the

2xl surface. The results for the (100) surface are similar to those predicted by

T2. Yet another modification of the bond-bending term had to be made in order

to successfully model the (111) (2n+l)x(2n+l) DAS surfaces. 16 It is not clear

how these modifications affect properties previously determined. The original

potential and its two modifications are in fact three different potentials just as

are T2 and T3. Finally, these potentials have not been tested for bulk point

defects and small clusters.

7.4 Bolding and Andersen.
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Bolding and Andersen 20developed a potential which is a generalization of

the Tersoff potential. The attractive term is expressed as a sum of _- and rt-
bonding terms. Interactions up to five-body are included in the potential. The
functional form is complicated and there are over 30 parameters in this potential.

The fitting data base was very large and included the static properties of the

cubic diamond phase, the fact that the first pressure-induced phase

transformation from cubic diamond is to the R-tin phase, and finally the energies

and geometries of global and local minima for clusters of 2 - 10 atoms. For small

clusters, this potential generates a surface that has most of the minima (global

and local) predicted by the ab initio calculations. However, there is not, in

general, a one-to-one correspondence between the minima. The ground state

structures are predicted to have energies that are in excellent agreement with

those of quantum-mechanical calculations. The static properties of cubic

diamond silicon are well described but the potential fails to predict the negative

Cauchy discrepancy. For bulk point defects, only the vacancy is predicted to

have a formation energy in good agreement with the DFF results. The energies

of the interstitials, in particular the tetrahedral interstitial, are underestimated.

The (111) 2xl surface is well described. For the adatom structures of the (111)

surface, this potential predicts results that are qualitatively similar to those

obtained with T2. However, unlike T2, it predicts that the (111) 7x7 DAS

surface is unstable with respect to the ideal (111) surface. Finally, for the (100)

surface, the predictions are similar to those of T3.

7.5 Thermodynamic Interatomic Force Field

Chelikowsky, Phillips, Kamal, and Strauss 18 developed an interatomic

potential similar in form to Tersoff's. The motivation for constructing this

potential was to study the metallic to covalent transition which occurs in clusters

when the cluster size reaches a critical size. The angular dependence of the

bond-bending forces was intended to describe such a transition. The potential

describes the perfect diamond structure and the high-density polymorphs of

silicon very well. To model clusters, it was found necessary to introduce a so-

called dangling-bond vector which describes the transfer of bond strength from

a dangling bond to back bonds. The energies of Sin clusters with n<10 are,

however, still underestimated. Also, the ground state structures are in general

not correct, e.g., for n = 3, 4 and 6. The authors predict that their potential
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should be more useful for n > 10. The potential was not tested for bulk point

defects and for surfaces.

7.6 Modified Embedded Atom Method

Baskes, Nelson, and Wright 11 proposed a new potential based on the

embedded atom method. 4 The modification consisted of the introduction of an

angular dependence in the host electron density. This was necessary for an

adequate description of the bond- bending forces in the diamond cubic structure.

This potential was extensively tested by its authors. It gives a fit to the energies

of the high-density polymorphs comparable to some of the potentials considered

here. It describes exactly the static properties of cubic diamond. In particular,

unlike most other potentials it does predict the negative Cauchy discrepency. It

also provides a fair description of bulk point defects (in particular the vacancy);

however, it gives a high value for the energy of the intrinsic stacking fault in

silicon. In general, surfaces are poorly described. The potential predicts an

outward relaxation of the surface layer for all surfaces. The description of small

clusters is in general poor.

8 DISCUSSIONS AND CONCLUSIONS

We have performed extensive calculations on clusters, bulk phases, and

surfaces using the PTHT, BH, SW, DOD, T2, and T3 potentials for silicon. In

general, no potential is able to model properly all the equilibrium structures and

energies of small Sin (n = 2 - 6) clusters. More importantly, they all predict

many spurious minima on the potential energy surface of these microclusters.

The potentials do, however, predict, like the ab initio calculations, that the

structures derived from crystal fragments are not energetically favorable even

though the potentials were built from crystal data. T2 gives the best overall

description of these small clusters.

In general with the exception of the Dodson potential, the potentials do not

accurately describe the energies of the high-pressure bulk phases. A two-

dimensional structure with hexagonal symmetry is predicted by PTHT as the

most stable structure instead of the diamond cubic phase. Only T3 correctly

predicts the first pressure-induced phase transformation from diamond cubic to

the 13-tin phase with transition pressure and volumes which are in excellent
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agreement with experiment. SW, T3, and to a lesser extent DOD, describe the
elastic properties well. T2 also does a good job with the exception of the
vanishingly small value of C44. BH gives the best description of the phonon

frequencies even though it overestimates the elastic constants.

T3, SW, DOD, T2, and BH, in that order, give a fair overall description of the

structures and energetics of intrinsic defects. They should be useful in studies of

extended defects. PTHT underestimates strongly the energies of these defects.

T2 and BH also underestimates significantly the energies of the split vacancy

and of the tetrahedral interstitial, respectively. Only BH and SW correctly

predict the apparently now more accepted inward relaxation of the neighbouring

atoms surrounding the vacancy. SW yields a migration energy for the vacancy

which is in excellent agreement with experiment.

BH, SW, T3, and to a lesser extent T2 should also be useful in large-scale

simulations involving the (100) surface because their predictions of its energetics

and structures are in good agreement with those of the first principles

calculations. On the other hand, none of the potentials is able to model the

various reconstructions of the (111) surface. None of them model the 2xl

reconstruction of the (111) surface correctly because of their inability to model

re-bonding which stabilizes this reconstruction. PTHT predicts that this

reconstruction is stable with respect to the ideal lxl surface but with a relative

energy that is too small. T2 predicts that the ground state for the (111) surface

is the 3x3 DAS structure instead of the 7x7 DAS structure as previously

thought. As for the microclusters, T2 gives perhaps the best overall description

of the (111) surface.

BH and SW tend to overestimate bond lengths. In fact these two potentials,

along with T3, have, in general, similar predictions, and so do the PTHT and

Dodson potentials. These similar behaviors correlate with similar angular

variations of the three-body potentials, in form not necessarily in strength. The

difference in strength is somewhat compensated for by an opposite difference in

strength of the two-body potentials. T2 is dissimilar precisely because its three-

body potential differs markedly from that of the others. That these similarities

exist is quite remarkable since, except for SW and BH, these potentials are quite

different in schemes, functional forms, and range of interactions. This attests to

the importance of the bond-bending forces in these low-order potentials. Besides

the fact that they do not model rt-bonding, the main reason behind their inability

to be more transferable is an inadequate description of the angular forces. They
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either favor only small angular distortions around the tetrahedral angle (BH and

SW, around 127° for T3) or configurations where bond angles are much larger
than the tetrahedral angle (PTHT and DOD). They all penalize, with the

exception of T2, angles smaller than about 90° when in fact many structures in
silicon involve such small angles, e.g., microclusters and some (111) surfaces.
The angular function of T2 is more flexible. It appears that each type of

environment, i.e., bulk, clusters, and perhaps surfaces, needs its own angular
function. The combined function should then be oscillatory in nature and would

be determined by an appropriate selection of relevant structures and energies in
the fitting database. Bolding and Andersen did just that. 20 The resulting potential

models clusters rather well and gives a description of bulk properties

comparable to that of some of the potentials considered here. However, it still

failed to model properly (111) surfaces with the exception of the 2xl

reconstruction despite the fact interactions up to five-body were included in the

potential. This leads us to believe that it is perhaps not possible to construct a

totally global or transferrable potential.

In conclusion, none of the potentials considered in this work appear to be

superior to the others. Each has its strengths and limitations. None is totally

transferrable. Despite their shortcomings, we do believe that, some of these

potentials will be useful in large scale simulations of materials-related problems

as they can give insights into phenomena which are otherwise intractable to

investigate either experimentally or with first principles methods.
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TABLE I. Parameters for the potentials. The units are such that energy and length

are in eV and ,t,, respectively. 0o is in degrees.

PTHT BH SW DOD T2 T3

Re 7.3 5.0

l.t 0.312058

3.9527357

3.77118 3.2 3.2 3.0

2.0951 0.4 0.4 0.3

A1 50928.2584 142.2922

A2 697.005028 107.0338

_1 12 0.5200836

_2 6 0.4206931

189.360881 1614.6 3264.7 1830.8

16.31972277 155.08 95.373 471.18

4 2.7793 3.2394 2.4799

0 1.3969 1.3258 1.7322

Z or Zl 2949.47219 26.0598

Z2 1.3441478

or 51 0.3034373

52 0.3191903

n

48.61499998

1.2 4 1.3258 1.7322

0.6207 22.956 0.78734

,q

Oo 109.471221 109.471221

0.13420598 0.33675 1.0999xi0 6

0.8543 2.80755739 105.2851343

3.9588 2.0417 16.218

90 126.745381
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TABLE II. Equilibrium properties of Si2 and Si3. re and r ()k) are the bond lengths,

De and EB (eV) are the binding energies, o30 (cm-1) is the vibrational frequency,

and 0 (degrees) is the bond angle. Values in parenthesis correspond to a

mechanically stable configuration lying higher in energy. In the second column, the

experimental values are for Si2 (Ref. 97) and KR corresponds to the ab initio results

for Si3 (Ref. 88).

Experiment/KR PTHT BH SW DOD T2 T3

Si2

De 3.24 2.38 2.49 2.32 3.61 2.62 2.67

re 2.246 2.295 2.233 2.352 2.192 2.313 2.295

COo 510.98 794 463 462 521 467 471

Si3

EB 7.7 5.29 5.39 4.74 7.04 7.87 5.33

(- 7.6) (5.23) (4.63) (6.05) (4.81)

0 77.8 180 60 60 180 60 126.75

(60) (60) (109.47) (60) (60)

r 2.17 2.27 2.42 2.56 2.20 2.31 2.30

(2.26) (2.39) (2.35) (2.40) (2.50)

65



TABLE III. Properties of Si4 - Si6. The first three most stable structures are given in the order of
decreasing bindi.'ng energy. For each structure, the first entry is the binding energy EB (eV), the others are
bond lengths (A), and angle (degrees). KR corresponds to the ab initio results of Ref. 88. The asterisk
indicates that this structure is known to be not a minima on the quantum-mechanical surface. The different
structures along with the corresponding structural parameters are illustrated in Fig. 5. The acronyms are:
tetrahedron (Td); edge-capped rhombus (ECR); corner-capped triangle and rhombus (CCT, CCR);

pentagonal, square, and distorted pentagonal pyramid (PP, SP,DPP); flat and elongated trigonal bipyramid
(FTB,ETB); orthorhombic bipyramid (OB); edge-and face-capped trigonal bipyramid (ECTB,FCTB). For
the linear structures, the numbering of atoms is from one end to the other.

KR PTHT BH SW DOD T2 T3

Si4 rhombus rhombus square* square* linear*
12.85 8.48 8.93 8.69 10.48

r12 = 2.30 2.37 2.34 2.39 r12 = 2.20
r13 = 2.40 2.59 r23 = 2.21

D2d square* Td T d square*
11.53 8.44 8.25 7.13 9.73

2.34 2.56 2.72 2.33

Td
9.71
2.46

Sis FTB
16.70

r12 = 3.26
r14 = 2.34
r45 = 2.78

ETB
15.62
2.48
2.40
3.86

FSP
13.90

r12 = 2.48
r15 = 2.36

CCT* CCT* chain rhombus

8.33 7.38 6.95 9.53

r12 = 2.26 r12 = 2.30 2.35 2.40
r13 = 2.36 r13 - 2.45 109.5 2.55

Td square
15.71 8.64

2.31 2.38

rhombus chain

13.10 8.00
2.31 r = 2.30

2.31 0 = 126.75

square linear*
10.49 7.41

2.31 2.32
2.34

ECR pentagon pentagon pentagon ETB pentagon
12.04 12.08 11.57 14.25 20.40 12.44

r12 = 2.34 2.28 2.35 2.28 2.37 2.32
rla = 2.56 2.35
r24 = 2.37 3.84

pentagon E S P* FTB linear FS P CCR
11.88 11.90 11.46 13.91 20.13 11.27

2.31 2.47 3.25 r12 = 2.20 2.34 2.38
2.64 2.50 r23 = 2.21 2.32 3.50

3.29 2.30

CCR FTB ESP* CCR FTB FTB
11.65 11.82 11.01 13.09 16.98 10.95

r12 = 2.34 3.02 2.46 2.36 3.50 3.36
r24 = 2.59 2.46 2.85 3.15 2.34 2.45
r15 = 2.26 3.48 2.21 2.34 3.00

hexagon octahedron hexagon
18.48 26.52 15.79

2.25 2.37 2.30

lineal"

17.34

r12 = 2.20
r23 = 2.21
r34 = 2.21

PP
16.40
2.43
2.53

Si6 ECTB hexagon wedge wedge
21.91 15.31 15.81 15.15

2.28 r12 = 2.53 2.60
r14 = 2.40 2.40

hexagonal chair PP PP DPP
15.98 14.72 I5.71 15.12

r12 = 2.4I 2.41
r16 = 2.50 2.63

asymmetric asymmetric asymmetric
14.63 15.46 15.07

r12 = 2.47 3.26 3.34
r34 = 2.63 3.63 3.36

FCTB*
26.22

OB
23.95

asymmetric
14.83

3.19
3.26

wedge
I4.33

2.54
2.43
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TABLE IV. Equilibrium properties of optimized bulk silicon structures. AE = Ec - Ec(diamond)

and Ec is the cohesive energy (eV/atom). a (A) and B (Mbar) are the lattice parameter and bulk

modulus, respectively, x is the internal parameter of the BC-8 structure; it is given in units of a. In

the DFT column, the results for BC-8 and graphite are from Refs. 101 and 102, respectively, the

values of B for simple hexagonal and 13-tin are from Ref. 103, and the remaining data are from

Ref. 89. The experimental values of Ec and a for diamond are -4.63 eV and 5.429/_, respectively.

DFT PTHT BH SW DOD T2 T3

Diamond Ec -4.67 -4.63 -4.6045 -4.63 -4.63 -4.6304 -4.6297

a 5.451 5.435 5.432 5.431 5.432 5.431 5.432

Hexagonal AE 0.016 0.0012 0.012 0.0 0.0 0.0 0.0
Diamond a 3.858 3.846 3.841 3.840 3.841 3.841 3.841

c/a 1.633 1.630 1.639 1.633 1.633 1.633 1.633

BC-8 zLE 0.13 0.311 0.238 0.201 0.207 0.026 0.245
a 6.67 6.682 6.730 6.591 6.588 6.579 6.644
x 0.1003 0.1034 0.1015 0.1016 0.1054 0.1018 0.1008
B 0.96 2.73 2.05 0.85 0.96 1.10 1.03

13-tin AE 0.266 0.576 0.218 0.213 0.350 0.455 0.327

a 4.822 5.243 5.113 4.969 4.978 4.987 4.905
c/a 0.552 0.464 0.522 0.561 0.521 0.518 0.524

B 1.19 2.71 3.08 4.43 2.97 3.40 1.38

Simple AE 0.293 -0.559 0.191 0.403 0.371 0.527 0.469

Hexagonal a 2.639 2,405 2.762 2.833 2.634 2.613 2.699
c/a 0.94 2.866 0.956 0.918 0.997 0.985 0.967

B 1.06 3.11 3.61 1.29 1.40 1.38

Simple AE 0.348 0,447 0.158 0.293 0.388 0.343 0.318
Cubic a 2.528 2.549 2.609 2.612 2.529 2.501 2.544

BCC AF. 0.525 0.916 .312 0.300 0.479 0.644 0.432
a 3.088 3.165 3.236 3.245 3.153 3.126 3.084

HCP AE 0.552 0.110 0.052 0.321 0.637 0.551 0.761
a 2.735 4.094 3.973 3.647 2.800 2.730 2.756

c/a 1.633 0.591 0.685 0.884 1.633 1.633 1.633

FCC zkE 0.566 0.950 0,255 0.423 0.628 0.548 0.761
a 3.885 3.984 4.075 4.147 3.960 3.861 3.897

Graphitic AF. 0.710 0.3177 0.3847 0.6715 0.3625 0.5087 0.5131
Silicon a 3.895 4.123 4.145 4.073 4.094 4.101 4.096

c/a 2.726 1.215 1.232 1.193 1.193 1.198 1.233
B 0.50 2,738 2,076 1.667 0.944 1.003 0.984

67



TABLE V. Elastic and vibrational properties of silicon. The bulk modulus and

elastic constants are in Mbar, the phonon frequencies in THz. B' is the pressure

derivative of the bulk modulus, C°44 is the theoretical value obtained for C44 in

the absence of internal strain, and _ is Kleinman's internal strain parameter; their

value in column 2 is from Ref. 89, 110, and 112, respectively. The experimental

values for B and the elastic constants are from Ref. 109. The phonon frequencies

were taken from Ref. 111, 34, 10, 27, and 13 for experiment, PTHT, BH, SW and

T2, and T3, respectively.

Experiment PTHT BH SW DOD T2 T3

B 0.99 2.788 1.692 1.083 0.884 0.98 0.98

B' 4.2 7.82 5.66 2.93 4.27 4.58 4.30

C11 1.67 2.969 2.042 1.616 1.206 1.217 1.425

C12 0.65 2.697 1.517 0.816 0.722 0.858 0.754

(244 0.81 0.446 0.451 0.603 0,659 0.103 0.690

C°44 I.I 1 2.190 1.049 1,172 3.475 0.923 1.188

0.74 1.03 0.74 0.63 1.06 0.83 0.67

VTA (X) 4.4 4.5 5.6 6.7 2.7 9

VTO (X) 13.9 19.3 14.5 15.9 15.3 16

VEOA (X) 12.3 13.8 12.2 13.1 1 1.7 12

VETO (F) 15.3 18.3 16 18.1 16.5 16
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TABLE VI. Formation energies ( in eV) of intrinsic defects in silicon. The first

and second values are for the equilibrium (relaxed) and ideal (unrelaxed)
configurations, respectively. The third value is the radial relaxation of nearest-

neighbors around the defect (in %); a negative value indicates an inward

relaxation towards the defect. IT, IH, IB, and IS are the tetrahedral, hexagonal,

bond-centered, and split interstitials, respectively. The DFT energies and

relaxation for the split vacancy and the unrelaxed vacancy formation energy are
from Ref. 96; the others are from Ref. 94.

DFT PTHT BH SW DOD T2 T3

Vacancy 3 - 4
4.5

0.77 2.12 2.82 2.57 2.81 3.70
2.50 3.83 4.63 3.23 2.83 4.10

38.5 -25.7 -24 14.7 1 10.5

Split Vac. 4.19 2.83 2.30 3.36 4.17 1.40 3.50

5.01 4.53 4.72 6,00 8.12 4.I5 10.5

-9.5 -15.9 -I2.5 -11.8 -14.5 -14.9 -8.8

IT 5-6 0.63 1.56 5.25 3.03 5.03 3.45

1.91 4.57 12.21 5.00 5.85 6.92

3.8 8 9 9.1 7.3 10.5

IH 4-5 0.84 2.89 6.95 2.61 3.67 4.61
5.32 9.31 17.10 5.11 5.39 8.22

7.4 11.5 14.7 7.3 7.6 10.2

IB 4 - 5 1.92 2.54 5.99 4.39 2.84 5.86

IS 1.47 3.30 5.62 3.49 2.32 4.70
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TABLE VII. Properties of Si(100) surfaces. _, is the surface energy, A T is the relative energy

with respect to the ideal lxl surface, and _ is the lateral surface stress tensor. The x and y

directions run along the dimer bond and the rows of dimers, respectively. Energies and stresses are

given in eWixl cell. A is the first interlayer contraction (in %). rd and rob (in/I,) are the bond

lengths of the dimer and the back bond between surface and second-layer atoms. 01, 02, and 03,

are the bond angles as indicated in Fig. 9. The DFT results for the surface energy and the structural

parameters of the (2xl) structure are from Ref. 90 and 125, respectively, those for the surface

stress are all from Ref. 86, and the remaining data are from Ref. 123 (see text).

DFT PTHT BH SW DOD T2 T3

ideal lxl

1.805 2.080 2.315 1.779 2.015 2.126
1.176 1.421 0 0 0 0

2.363 1.683 0 0.145 0.625 -0.236

3' 2.5

axx 2.535

(Jyy 0.855

A_

Cxx

IJyy

A

relaxed lxl

-0.03 -0,077 -0.027 0 -0.085 -0.004 -0.037

-0.427 0.848 0 0.515 0.023 0.076

-2.176 0.273 0 -2.775 0.080 -1.693

-5.1 -7.0 -5.5 0 -10.2 -2.3 -7.2

2xl

A-/ -0.93 -0.690 -0.709 -0.899 -0.714 -1.258 -0.759

Cxx 0.693 -0.808 0.669 1.167 -0.094 0.703 0.367

tJyy -1.945 -1.731 0.008 -0.051 -1.709 0.190 -1.236
A -24.4 -23.3 -13.3 -8.3 -22.9 -14.6 -15.6

rd 2.23 2.339 2.403 2.404 2.318 2.328 2.365
rob 2.29 2.313 2.352 2.367 2.314 2.340 2.336

01 107.8 109.0 106.7 104.8 109.0 106.6 106.7

02 92.9 91.0 94.8 97.9 90.6 94.8 94.7

03 100.8 104.7 103.5 101.0 106.5 103.2 102.8

c-2x2

A)' -0.839 -0.703 -0.824 -0.720 -1.143 -0.753

axx -1.356 0.898 1.691 0.274 1.517 0.865

(;yy -1.419 0,851 0.574 -0.866 0.567 -0.344

A7

Cxx

(Yyy

-0.895 a

Pandey n.bonded defect structure

-0.687 -0.814 -0.045 -1.289 -0.682

0.130 0.782 -1.110 1.075 -0.061

2.577 3.454 -0.227 1.441 3.075

a Ref. 127
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TABLE VII/. Propertiesof Si(111)surfaces.For the (_3x"J3)surface,V standsfor the vacancy

model.Tis thesurfaceenergy, A'y the relative energy with respect to the ideal lxl surface, and (3 is

the lateral surface stress tensor. For the 2x 1 _-bonded surface, the x and y directions are parallel and

perpendicular to the surface chains, respectively. Energies and stresses are given in eV/lxl cell. A is

the In'st interlayer contraction (in %). Unless indicated otherwise, the DFT results are from Ref. 85

and 91 where the stresses were calculated at 8 Ry and the energies at 12 Ry.

DFT PTHT BH SW DOD T2 T3

7 1.56a

cr

A T -0.17 a
(3 -0.54

A -27.0

AT -0.45
(3xx 1.4

(3yy 0.4

A7 <-0.45
(3

Ay
(3

T4 Ay -0.44
(3 1.66

H3 A7 -0.33
(3 1,18

T4 A7 -0,38
a 1.70

H3 ,57 -0.07 b

(3

V A T 0.14 c
(3

ideal (lxl)

0.831 1.035 1.158 0.806 0.707 1.026
2.323 0.969 0 0.140 0.625 -0.074

relaxed (lxl)

-0.148 -0.012 0 -0.134 -0.005 -0.069

-2.148 0.149 0 -1.664 0.102 -1.241

-27.6 -8.4 0 -31.7 -6.4 -20.3

(2xl) rt.bonded

-0.150 0.373 0.002 0.091 0.145

0.252 0.017 -0.770 0.473 -0.663

0.956 2.236 1.087 1.043 1.711

(7x7) DAS

0.240 0.398 0.532 0.390 -0.170 0.625

2.172 1.297 1.972 1.153 1.614 0.738

(7x7) DS

-0.120 0.093 0.062 -0.024 -0.052 0.041

0.295 0.534 0.980 -0.272 0.559 0.112

(2x2)

0.085 0.333 0.513 0.320 -0.081 0.566

0.949 0.606 1.113 -0.074 1.248 -0.608

-0.184 0.191 0.267 0.337 -0.115 0.350

-3.606 -0.397 0.234 -3.309 1.391 -0.621

(',/3x43)

0.206 0.442 0.456 0.447 -0.109 0.774

1.449 0.742 2.111 0.371 1.663 -0.388

-0.178 0.260 -0.043 0.478 -0.143 0.482

-4.143 -0.502 0.724 -3.528 1.705 -0.522

0.44 0.45 0.08 0.43 0.45 0.55

-2.35 5.26 5.98 - 1.32 -0.01 - 1.17

a Ref. 149

b Ref. 93, calculated at 6 Ry.

c Ref. 148, calculated at 10.5 Ry.
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TABLE IX. Properties of the Si(ll0) surface. _, is the surface energy, AT the

relative energy with respect to the ideal lxl surface, and tr is the lateral surface

stress tensor. The x and y directions are parallel and perpendicular to the

surface chains, respectively. Energies and stresses are given in eV/lxl ceil. A is

the first interlayer contraction (in %).

PTHT BH SW DOD T2 T3

ideal (lxl)

"/ 0.885 1.043 1.158 0.806 0.707 1.026

C_xx 2.170 0.934 0 0.140 0.625 -0.074

(Yyy 1.273 0.714 0 0.385 0.468 0.179

relaxed (lxl)

A_, -0.080 -0.018 0 -0.068 -0.009 -0.035

Crxx -1.627 0.063 0 -1.360 0.018 -1.027

_yy -1.091 -0.066 0 -0.634 0.063 -0.612
A -5.3 -3.4 0 -6.6 -2.4 -4.3
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Figure Captions

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Illustration of the geometry of a triplet of atoms used in the definition

of the three-body potentials.

Comparison of the two-body potential functions, V2(r). The open

circles correspond to the ab initio calculation of Ref. 83.

Comparison of the angular variation of the three-body potentials, g(0),

(an isoceles triangle was used for PTHT).

Three-body energy (in eV/atom) versus angle 0 for a triplet of atoms

forming an isoceles triangle. 0 is the apex bond angle between the

two equal bond lengths fixed at the equilibrium bond length of the

diamond structure of silicon. (see text)

Illustration of the geometry of some structures for Si 5 - Si 6. These

are: the rhombus (1), the corner-capped triangle (2), the chain (3),

the D2d structure of Ref. 88 (4), the flat trigonal bipyramid (5), the

comer- (6) and edge- (7) capped rhombus, the square pyramid (8),

the edge- (9) and face- (10) capped trigonal bipyramid, an

asymmetric structure (11), a distorted (12) and regular (13)

pentagonal pyramid, the orthorhombic bipyramid (14), and the wedge

or trigonal prism (15). In the elongated form of the trigonal bipyramid,

atoms 1, 2, and 3 are bonded to each other and the apex atoms are

widely spaced.

Binding energy per atom versus the number of atoms in the cluster in

Si 2 - Si 6. The curve KR corresponds to the ab initio results of Ref. 88.

Comparison of cohesive energy for various bulk silicon structures.

For the graphitic and HCP structures, see text.

Comparison of energy versus first-nearest neighbor distance for the

cubic diamond structure.

Side view of the Si(100)-2xl surface showing the symmetric dimer

reconstruction. The arrows indicate the atomic displacements (in A)

from the bulk terminated positions. The four values (starting from the

top) correspond to DFT(Ref. 125), BH, SW, and T3, respectively. The

displacements for T2 are similar to those for T3; those for PTHT and
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DOD are somewhat different. The cartesian coordinate system is

also shown; the y direction runs into the page and is along [ 110].

Figure 10. Side view of the Pandey rt-bonded defect structure for the Si(100)
surface. The cartesian coordinate system is the same as in Fig. 9.

Figure 11. Relative energy with respect to the ideal lxl surface and surface
stress for the Si(111) (2n+l)x(2n+l) DAS (open circles) and

DS(filled circles) structures as a function of n for the T2 potential.
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